Towards an « Infinite » Number of Calcium Oxalate Structures?

C. Bonhomme*, C. Gervais, F. Babonneau

Laboratoire de Chimie de la Matière Condensée de Paris

Sorbonne Université, Paris, France

caoxite (COT)

 $Ca(C_2O_4)\cdot 3H_2O$

weddellite (COD) $Ca(C_2O_4) \cdot 2H_2O$

whewellite (COM) $Ca(C_2O_4) \cdot H_2O$

2.30um

26TH CONGRESS AND GENERAL ASSEMBLY OF THE INTERNATIONAL UNION OF CRYSTALLOGRAPHY

Commission on NMR Crystallography and Related Methods

Pathological calcifications (kidney stones, KS)

2

Hydrated CaOx, $Ca(C_2O_4)_2$.nH₂O, are ubiquitous

Materials Science inc. Nanomaterials & Polymers

Amorphous biogenic calcium oxalate

Eva Weber,^[a, b] Andreas Verch,^[b] Davide Levy,^[a] Andy N. Fitch,^[c] and Boaz Pokroy*^[a]

raphides formed by Lemna minor (duckweed)

Synthetic CaOx, Ca(C₂O₄)₂.nH₂O

Synthetic CaOx, Ca(C₂O₄)₂.nH₂O

¹³C solid state NMR

ARTICLE

DOI: 10.1038/s41467-017-00756-5 OPEN

A non-classical view on calcium oxalate precipitation and the role of citrate

Encarnación Ruiz-Agudo¹, Alejandro Burgos-Cara ¹, Cristina Ruiz-Agudo^{2,3}, Aurelia Ibañez-Velasco¹, Helmut Cölfen ³ & Carlos Rodriguez-Navarro¹

Pathological calcifications (kidney stones, KS)

Tenon hospital, Paris

Coll.: M. Daudon, E. Letavernier, D. Bazin

current lack of MR Imaging techniques:

"... Using standard MRI technique, stones appear as a non-specific void..."

(Brisbane, Nat. Rev. Urol., 2016)

• state of the art at hospital: μ -Computed Tomography (CT)

Outline

NMR as a unique platform of characterization

Dynamic Nuclear Polarization crystallography

Magic Angle Spinning MRI

The solid state NMR toolbox

B₀

Magnetic Resonance, 2021

tribute Britannica, Sinobiol 11

Structure, interfaces and local dynamics in KS

¹³C CP MAS NMR

Magnetic Resonance, 2021

A focus on ¹H solid state NMR

neutron, XRD data

relaxation of structures at DFT level

VASP (Kresse, Hafner, Furthmüller)

A focus on ¹H solid state NMR

The subtle role of temperature

Hydrated Calcium Oxalates: Crystal Structures, Thermal Stability, and Phase Evolution

Alina R. Izatulina,*^{,†}[©] Vladislav V. Gurzhiy,[†] Maria G. Krzhizhanovskaya,[†] Mariya A. Kuz'mina,[†] Matteo Leoni,^{‡©} and Olga V. Frank-Kamenetskaya[†]

Order and Disorder in Calcium Oxalate Monohydrate: Insights from First-Principles Calculations

Published as part of a Crystal Growth and Design virtual special issue 'Remembering the Contributions and Life of Prof. Joel Bernstein'.

Margarita Shepelenko,[†] Yishay Feldman,[‡] Leslie Leiserowitz,^{*,†} and Leeor Kronik^{*,†}®

Cross Polarization ¹H–¹³C dipolar interaction through space

 $D \sim \frac{1}{r_{(^{1}\text{H}-^{13}\text{C})}^{3}}$

In situ dehydration: ⁷⁹Br MAS NMR

K. Thurber et al., 2009

¹H–¹³C SLF (Separated Local Field) by inversion of polarization

¹H–¹³C SLF (Separated Local Field) by inversion of polarization

¹H–¹³C (SLF) Separated Local Field by inversion of polarization

Full interpretation of the ¹³C CP MAS NMR spectra of COM

 $\sqrt{\text{COM phase: } P2_1/c \text{ space group}}$

Full interpretation of the ¹³C CP MAS NMR spectra

 $\sqrt{\text{disordered COM phase: statistical I2/m space group (Shepelenko et al., 2020)}}$ 27

The new phase (from NMR...) is ubiquitous in COM syntheses

$\sqrt{\text{COM phase: } P2_1/c \text{ space group}}$

 $\sqrt{1}$ disordered COM phase: statistical *I*2/*m* space group (Shepelenko *et al.*, 2020)

Towards artificial kidney stones

The new phase (from NMR) is ubiquitous in KS

30

Outline

NMR as a unique platform of characterization

Dynamic Nuclear Polarization crystallography

Magic Angle Spinning MRI

synthesis of labeled samples (¹⁷O) by mechanochemistry

Angewandte International Edition Chemie

Communication

Unleashing the Potential of ¹⁷O NMR Spectroscopy Using Mechanochemistry

Dr. Thomas-Xavier Métro, Prof. Christel Gervais, Anthony Martinez, Prof. Christian Bonhomme, Dr. Danielle Laurencin 🗙

COM

Coll.: D. Laurencin, Montpellier (France) JPC C , 2022; Faraday Discuss., 2023 ³²

Dynamics of water molecules in COM

JPC C, 2022

Outline

NMR as a unique platform of characterization

- ► structure
- ► dynamics

More sensitivity

Dynamic Nuclear Polarization crystallography

Magic Angle Spinning MRI

The Randall's plaque: a calcium phosphate (hydroxyapatite, HAp)

Dynamic Nuclear Polarization (DNP) MAS

Griffin, Bodenhausen, Emsley...

Natural abundance ⁴³Ca DNP spectroscopy (N.A. 0.14%, low γ , I = 7/2)

 $v_0(^{43}Ca) = 26,94 \text{ MHz}, 100 \text{ K}, \text{ <u>DNP juice</u>: glycerol-d_8/D_2O/H_2O (60/30/10; v/v/v) + AMUPol,$

sample: ~ 20 mg

Nature Commun., 2017

Coll.: D. Lee, G. De Paëpe, Grenoble, France

m < 100 μg

¹³C DNP CP MAS approach (400 MHz & 100 K)

sufficient Randall's plaque material in the mg to tens of mg quantities necessary for ${}^{13}C{}^{31}P$ REDOR".

Some perspectives in the study of pathological calcifications

Outline

NMR as a unique platform of characterization

- ► structure
- ► dynamics

More sensitivity

DNP crystallography

Magic Angle Spinning MRI

GIPAW calculations

DNP... + DFT modeling ... see: Peroos, de Leeuw, Ugliengo, Astala, Marisa... among others!

optimization of geometry at DFT level

PBE, van der Waals Grimme D3

VASP, QUANTUM-ESPRESSO, GIPAW

Coll.: F. Babonneau,

C. Gervais

Synthetic carbonated nanosized HAp: DNP characterization

- ▶ synthetic HAp, ~ 1 wt % in C, labeled in ¹³C
- ► 1D, 2D, double- and triple resonance CP, SQ-DQ experiments

HAp

c axis

(PO₄³⁻

Synthetic carbonated nanosized HAp: DNP characterization

► synthetic HAp, ~ 1 wt % in C, labeled in ¹³C

13C (ppm)

▶ 1D, 2D, double- and triple resonance CP, SQ-DQ experiments

HAp c axis

(**PO**₄³

OH-

Towards structural models

Analytical Chem., 2017

Analytical Chem., 2017

Carbonate substituted hydroxyapatite (HAp)

A, B, A/A, B/B ... + charge compensation mechanisms \rightarrow structural models

A type (full, diluted)

Chemistry–Methods, 2023

A, B, A/A, B/B ... + charge compensation mechanisms \rightarrow structural models

Ca₂₀(PO₄)₁₂(OH)₄ HAp (1×2×1)

Ca₂₀(PO₄)₁₁(CO₃)(OH)₅ B-OH

B type (with OH^- or $M = Na^+$, K^+ ...)

A, B, A/A, B/B ... + charge compensation mechanisms \rightarrow structural models

B type (with OH⁻ or M = Na⁺, K⁺...)

Towards a global understanding of CHAp related NMR data

Silicate substituted HAp nanoparticles

Coll.: D. Marchat, Saint-Etienne, France

Magn. Reson. Chem., 2008 Acta Biomat., 2010

Nuclear Magnetic Resonance as a Tool for the Investigation of Interfaces and Textures in Nanostructured Hybrid Materials, (2017) Wiley

Solid-State NMR Characterization of Sol-Gel Materials: Recent Advances, The Sol-Gel Handbook: Synthesis, Characterization, and Applications, (2015) Wiley

Silicate substituted HAp nanoparticles

A. Froment, PhD, October 2023

B type: SiO_4^{4-} , $SiO_3(OH)^{3-}$, H_2O , HPO_4^{2-} ... + charge compensation (V_{OH-})

 $\delta(^{1}H) = 5.2 \text{ ppm} \leftrightarrow \text{protonated silicate}$

A. Froment, PhD, October 2023

Back to KS: DNP crystallography

bulk (water, organics...)

CP2K/quickstep DFT Gaussian plane wave hybrids PBE / D3 Grimme / OptPBE-vdW BO-MD GROMACS, Gromos force field 54a7

role of water, layers of solvation at DFT level...

<u>Coll</u>.: F. Tielens, Brussels (Belgium)

Crystal Growth & Design, 2020

Outline

NMR as a unique platform of characterization

- ► structure
- ► dynamics

More sensitivity

DNP crystallography

Magic Angle Spinning MRI

First MAS MR Imaging of kidney stones

"... Using standard MRI sequences, stones appear as a *non-specific void*" (Brisbane *et al.*, Nat. Rev. Urol., 2016)

Coll.: V. Sarou-Kanian, F. Fayon, Orléans , France

First MAS images of kidney stones

WB 750 MHz AVANCE III HD, 17.6 T. Bruker *Micro* 2.5. 2.5 G.cm⁻¹A⁻¹ (60 A per axis). 3.2mm Bruker probe (up to 24 kHz). FOV ~ 3.5mm. Res. ~ 31 μ m, 61 μ m.

tribute Pampel

Conclusions and acknowledgments

- ¹H and ¹³C nuclei as pertinent targets for diagnosis at hospitals
- in situ monitored phase transformations
- DNP + crystallography
- MAS MRI

W.-C. Teh, A. Froment, I. Goldberga, C. Leroy, T. Debroise, Y. Petit

F. Babonneau, G. Gervais, D. Laurencin

M. Daudon, E. Letavernier, D. Bazin (Tenon Hospital)

V. Sarou-Kanian, F. Fayon

D. Lee, G. De Paëpe

