Path-Sum: a New Avenue for Spin Dynamics

<u>C. Bonhomme¹</u>, P.-L. Giscard², S. Pozza³

¹ LCMCP, Sorbonne Université, Paris, France

² LMPA, ULCO, Calais, France

³ Charles University, Praha, Czech Republic

43rd FGMR Annual Discussion Meeting

September 12 - 15, 2022 in Karlsruhe

Standard equations in NMR

Schrödinger equation

 $\frac{\partial}{\partial t} |\Psi(t)\rangle = -\frac{i}{\hbar} \widehat{H}(t) |\Psi(t)\rangle$

Liouville – von Neumann equation

$$\frac{d}{dt}\,\widehat{\rho}(t)\,=-\frac{i}{\hbar}\,[\widehat{H}(t),\widehat{\rho}(t)]$$

density operator

Dyson time-ordering operator

$$\widehat{U}(t',t) = \mathbf{OE}\left[-i\widehat{U}(t',t)\right] = \widehat{T}\exp(-i\int_{t}^{t'}\widehat{U}(\tau)d\tau)$$

\rightarrow evolution operator

 \rightarrow « exponential » of a (time dependent) matrix

Solid-State Sciences 1

C.P. Slichter

Principles of Magnetic Resonance

The evolution operator U(t)

► a general *mathematical* problem: coupled LDE with *non-constant* coefficients $a_{11}(t')$, $a_{12}(t')$...

$$\mathsf{A}(t')\mathsf{U}(t',t) = \frac{d}{dt'}\mathsf{U}(t',t), \quad \mathsf{U}(t,t) = \mathsf{Id},$$

The evolution operator U(t) and the ordered exponential

$$\widehat{U}(t',t) = OE\left[-i\widehat{U}(t',t)\right] = \widehat{T} \exp(-i\int_{t}^{t'} \widehat{U}(\tau)d\tau)$$

Magnus

Floquet

- G. Floquet, Ann. Sci. Ecole Norm. Sup., 1883
- F.J. Dyson, *Phys. Rev.*, 1949
- W. Magnus, Pure Appl. Math., 1954
- F. Fer, Bull. Classe Sci. Acad. Roy. Bel., 1958
- J.H. Shirley, Phys. Rev., 1965
- U. Haeberlen, J.S. Waugh, Phys. Rev., 1968
- M.M. Maricq, Phys. Rev., 1982

- S. Vega, E.T. Olejniczak, R.G. Griffin, J. Chem. Phys., 1984
- I. Scholz, B.H. Meier, M. Ernst, J. Chem. Phys., 2007
- M. Leskes, P.K. Madhu, S. Vega, Progress in NMR Spect., 2010
- M. Goldman, P. J. Grandinetti, A. Llor et al., J. Chem. Phys. 1992
- E.S. Mananga, Solid State NMR, 2013
- K. Takegoshi, N. Miyazawa, K. Sharma, P. K. Madhu, J. Chem. Phys., 2015
- M. Chavez, M. Ernst, arXiv 2022 (x 2)

perturbative methods, convergence (?)

Introduction to Path-Sum

From Exponential to Ordered Exponential

Analytical results

Implementation in Mathematica

$$\mathcal{G} = (\mathcal{V} \text{ertex set}, \mathcal{E} \text{dge set})$$

ex.: $walk \mathcal{W}_{1 \leftarrow 2}$ (from \mathcal{V}_2 to \mathcal{V}_1) of *length* 4

Giscard, 2012

Adjacency finite matrix A_a

$$\mathbf{A}_{\mathbf{g}} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & a_{32} & 0 \end{pmatrix}$$

entry: weight on a directed edge

the *powers* of the Adjacency matrix A_g on a graph g generate ALL weighted WALKS *W* on g

N. Biggs: Algebraic Graph Theory (1993) – time-independent matrices

Simple paths and simple cycles

♦ *simple path* **P** (self avoiding walk): **W** whose **V** are all **distinct**

simple cycle C (self avoiding polygon): *W* whose endpoints are identical and intermediate
 v are all distinct and different from the endpoints

« Fundamental Theorem of Arithmetic on *g* » (Giscard, 2012)

► *W* factor *uniquely* into *prime* elements, *i.e. simple paths* and *simple cycles*

▶ if *9* is *finite* the number of primes is *finite*

resummation of all *W* involves a <u>finite</u> number of operations: sum on simple paths and continuous fraction of simple cycles with vertex removal

Resummation of \mathcal{M} on a graph: an illustration

9

Resummation of \mathcal{M} on a graph: an illustration

if *G* is *finite*: the continued fraction is *unique* and *finite*

$$F(A_{\mathcal{G}})_{\omega\alpha} = \sum_{k=0}^{\infty} c_{k} \sum_{\mathcal{U}_{\mathcal{G},\alpha\omega;k}} a_{\omega h_{k}} \dots \times a_{h_{3}h_{2}} \times a_{h_{2}\alpha}$$
power series of $A_{\mathcal{G}}$ all weighted walks \mathcal{U} from \mathcal{V}_{α} to \mathcal{V}_{ω} of length k

Giscard, SIAM, 2013

ex.: matrix EXPONENTIAL

$$A = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 3 & 4 & -8 & 0 \\ -5 & 9 & 5 & -3 \\ 0 & 0 & 1 & 6 \end{pmatrix}$$

entries: real, complex numbers,
matrices, blocks of matrices....
$$e^{A} = \begin{pmatrix} 10.37 & 19.31 & -4.78 & 51.95 \\ 43.38 & -4.49 & -42.81 & 154.68 \\ -4.92 & 44.55 & -25.70 & -35.24 \\ 18.96 & 49.55 & 11.74 & 363.50 \end{pmatrix}$$

Some operations on matrices $\mathbf{A}_{\mathbf{\textit{g}}}$ using Path-Sum

one *partition* of A (among $B_4 = 15$)

Some operations on matrices $A_{\ensuremath{\textit{Q}}}$ using Path-Sum

Some operations on matrices $A_{\ensuremath{\textit{Q}}}$ using Path-Sum

17

Some operations on matrices A_{q} using Path-Sum

another *partition* of A (among $B_4 = 15$)

Some operations on matrices $\mathbf{A}_{\mathbf{\mathcal{G}}}$ using Path-Sum

2 simple cycles (\mathcal{C}) from $\mathcal{V}_1 \rightarrow \mathcal{V}_1$

Some operations on matrices $A_{\ensuremath{\textit{Q}}}$ using Path-Sum

2 simple cycles (\mathcal{C}) from $\mathcal{V}_1 \rightarrow \mathcal{V}_1$

Some operations on matrices $\mathbf{A}_{\mathbf{g}}$ using Path-Sum

ex.: matrix INVERSE β_1 β_2 δ_1 δ2 Available online at www.sciencedirect.com ScienceDirect Applied Mathematics and Computation 197 (2008) 345-357 ELSEVIER www.elsevier.com/locate/am α_2 α_1 α_3 Explicit formula for the inverse of a tridiagonal matrix by backward continued fractions 2008 Emrah Kılıc 1 TOBB University of Economics and Technology, Mathematics Department, 06560 Ankara, Turkey β_1 δ1 X1 $\alpha_2 - \beta_2 \frac{1}{\alpha_3} \delta_2$ $T = [t_{ij}] = \begin{bmatrix} \alpha_1 & \beta_1 & 0 \\ \delta_1 & \alpha_2 & \beta_2 \\ 0 & \delta_2 & \alpha_2 \end{bmatrix}$ self-loop self-loop self-loop $t_{11}^{-1} = \frac{1}{C_1^{\mathsf{b}}} + \frac{\beta_1 \delta_1}{C_2^{\mathsf{b}} (C_1^{\mathsf{b}})^2} + \frac{\beta_1 \delta_1 \beta_2 \delta_2}{(C_1^{\mathsf{b}})^2 (C_2^{\mathsf{b}})^2 C_3^{\mathsf{b}}}$ $2 \rightarrow 3 \rightarrow 2$ $\frac{\alpha_2\alpha_3-\beta_2\delta_2}{\alpha_1\beta_2\delta_2-\alpha_1\alpha_2\alpha_3+\beta_1\alpha_3\delta_1}$ $\rightarrow 2 \rightarrow 1$

easy to handle Path-Sum for Path (tridiagonal matrices)

► a finite time-independent matrix A_{q} associated to \mathcal{G} (bounded entries)

► each entry of a power series of A_g is given by a **finite** number of operations by using Path-Sum (with × product)

the matrix nature of the problem is fully replaced when working on entries

 \square or, one can keep it partially \rightarrow **PARTITIONS** (scalability)

\square calculations of **resolvents** by Path-Sum lead to **CLOSED-form** expressions when A_{a} is *time-independent*

Introduction to Path-Sum

From Exponential to Ordered Exponential

Analytical results

Implementation in Mathematica

• $\langle s_j | U(t) | s_i \rangle$ corresponds to the sum of all walks \mathcal{U} from \mathcal{V}_i to \mathcal{V}_j on \mathcal{G} including all possible jumping times for each transition between vertices of \mathcal{G}

ex.: consider the 3rd term of the Picard (Dyson) iteration:

 \rightarrow A(t₁) A(t₂) A(t₃)

ex.: the {1,4} entry of the matrix reads:

$$\rightarrow [A(t_1) A(t_2) A(t_3)]_{\{1,4\}} = \sum_{i,k} A(t_1)_{1,i} A(t_2)_{i,k} A(t_3)_{k,4}$$

weight of $1 \rightarrow i$ \mathcal{E} dge weight of $i \rightarrow k$ \mathcal{E} dge ...

 \rightarrow **W** from **1 to 4** of *length* **3**

finally: time integration over t_1 , t_2 and t_3 : *all w*, for *all* possible times, for *all* jumps between vertices

Ordered exponential

$$OE\left[A_{\mathcal{G}}\right](t',t) = \left(\begin{array}{c} \dots \\ < s_{j} \left| OE[A_{\mathcal{G}}](t',t) \right| s_{j} > \\ \dots \end{array} \right)$$
Path-Sum
resummation of all \mathcal{U} involves a *finite* number of or

resummation of all *W* involves a *finite* number of operations: *sum* on *simple paths* and *continuous fraction* of *simple cycles* with vertex removal

$$\sum \text{ALL weighted walks } \mathbf{j} \leftarrow \mathbf{i} \text{ on } \mathbf{A}_{\mathbf{j}}$$
but using *-product ... and $[\mathbf{1}_{*} - (* * * \cdots)]^{*-1} = \sum_{n \ge 0} (* * * \cdots)^{*n}$
 $(\mathbf{j} * \mathbf{g}) = \int_{t}^{t'} f(t', \tau) g(\tau, t) d\tau$
instead of × Kernel, K
Neumann series (analytical)

Giscard, J. Math. Phys., 2015

Path-Sum solution

- exact representation(transcendent, special functions...)
- non perturbative, super exponentially CV
- always closed form in

$$[1_* - (* * * \cdots)]^{*-1}$$

Neumann series: analytic, closed form at fixed accuracy Introduction to Path-Sum

From Exponential to Ordered Exponential

Analytical results

Implementation in Mathematica

Linearly polarized excitation, Bloch-Siegert (BS) effect: analytical solution

visualizing the solution at analytical / numerical level

ON and OFF resonance

 $eta/\omega \ll 1$ weak $eta/\omega \gg 1$ strong

Giscard, Bonhomme, Phys. Rev. Res., 2020

Linearly polarized excitation, Bloch-Siegert (BS) effect

$\mathbf{H}(t) = \begin{pmatrix} \frac{\omega_0}{2} & 2\beta\cos(\omega t) \\ 2\beta\cos(\omega t) & -\frac{\omega_0}{2} \end{pmatrix}$

analytical formula

spin flip duration, t_{sf}

$$f_{sf} = \frac{1}{2\sqrt{2}} \sqrt{\frac{12}{\beta^2} - \frac{15}{\omega^2} + \frac{\sqrt{3}}{\beta^4 \omega^2}} \sqrt{91\beta^8 - 88\beta^6 \omega^2 + 16\beta^4 \omega^4} \\ = \frac{1}{\beta} \sqrt{\frac{1}{2}(3 + \sqrt{3})} - \frac{\beta}{8\omega^2} \sqrt{\frac{1}{2}(129 + 67\sqrt{3})} \\ - \frac{\beta^3}{128\omega^4} \sqrt{\frac{1}{2}(16131 + 5545\sqrt{3})} + O(\beta^4).$$
(11)

$eta/\omega \ll 1$ order 0 of the Path-Sum solution

$$G_{\uparrow}^{(0)} = \delta(t', t)$$

$$P_{\uparrow \to \downarrow}^{(0)}(t) = \frac{\beta^2 t}{\omega} \sin(2\omega t) + \frac{\beta^2}{2\omega^2} + \beta^2 t^2 - \frac{\beta^2}{2\omega^2} \cos(2\omega t)$$

Separable (degenerate) kernel K

(Pleshchinski, Tagirov, J. Math. Sc., 1995)

the solution of a linear Volterra equation of second kind with separable K is necessarily separable

<u>conclusion</u>: K(t',t) is separable

A fundamental consequence of separability: Accelarated Neumann Series

a series related to ORDINARY resolvents (here *u*, *v* are formal variables)

An interesting consequence of separability: Accelarated Neumann Series

a series related to ORDINARY resolvents (here *u*, *v* are formal variables)

$$\frac{1}{1-u-v} = \underbrace{\frac{1}{1-u} \times \frac{1}{1-v}}_{k=0} + \underbrace{\frac{uv}{(1-u)(1-v)} \times \frac{1}{1-u-v}}_{iteration...}$$

$$R_K = \sum_{k=0}^{\infty} T^{*k} * \underset{i=1}{\overset{d}{*}} R_{K_i},$$

- extension to non-commutative *- product
 R_K(t', t)in terms of R_{Ki} (t', t) all accessible
- speed up of convergence if
 < T > = 0

$$K(t',t) := \sum_{i=1}^{d} K_i(t',t),$$

$$K_i(t',t) = a_i(t')b_i(t)$$

$$R_{K_i} := (1_* - K_i)^{*-1}$$
CLOSED-form

Linearly polarized excitation, Bloch-Siegert (BS) effect

in the case of ultra-strong regime, *i.e.* $\beta/\omega_0 \gg 1$ and $\langle T \rangle = 0$

$$K_{1}(t) = -2i\beta \begin{pmatrix} 0 & \cos(\omega t) \\ \cos(\omega t) & 0 \end{pmatrix}$$

$$K_{2}(t) = -i\omega_{0} \begin{pmatrix} 1/2 & 0 \\ 0 & -1/2 \end{pmatrix}.$$

$$G^{(acc,0)}(t',t) = \left[U^{(acc,0)}(t',t) \right]^{\prime}$$

$$= \int_{t}^{t'} G_{1}(t',\tau)G_{2}(\tau,t)d\tau.$$
related to individual K_i
the first term of the

Accelarated analytical Neumann Series is sufficient

Giscard, *J. Integral Equations Appl.* 2020 Giscard, Bonhomme, *Phys. Rev. Res.* 2020

35

Linearly polarized excitation, Bloch-Siegert (BS) effect

Accelarated Neumann Series $\rightarrow \beta$ / $\omega_0 >> 1$, < T >= 0

$$\mathbf{U}^{(acc,0)}(t) = \begin{pmatrix} \cos\left(\frac{2\beta}{\omega}\sin(\omega t)\right) + e^{-\frac{1}{2}i\omega_0 t} - 1 & -i\sin\left(\frac{2\beta}{\omega}\sin(\omega t)\right) \\ -i\sin\left(\frac{2\beta}{\omega}\sin(\omega t)\right) & \cos\left(\frac{2\beta}{\omega}\sin(\omega t)\right) + e^{\frac{1}{2}i\omega_0 t} - 1 \end{pmatrix} \\ + \int_0^t \begin{pmatrix} i\omega_0 e^{-\frac{1}{2}i\omega_0 \tau}\sin^2\left(\frac{2\beta}{\omega}[\sin(\omega \tau) - \sin(\omega t)]\right) & -\frac{1}{2}\omega_0 e^{\frac{1}{2}i\omega_0 \tau}\sin\left(\frac{4\beta}{\omega}[\sin(\omega \tau) - \sin(\omega t)]\right) \\ \frac{1}{2}\omega_0 e^{-\frac{1}{2}i\omega_0 \tau}\sin\left(\frac{4\beta}{\omega}[\sin(\omega \tau) - \sin(\omega t)]\right) & -i\omega_0 e^{\frac{1}{2}i\omega_0 \tau}\sin^2\left(\frac{2\beta}{\omega}[\sin(\omega \tau) - \sin(\omega t)]\right) \end{pmatrix} d\tau$$

 $\begin{pmatrix} \frac{\omega_0}{2} & 2\beta\cos(\omega t) \\ 2\beta\cos(\omega t) & -\frac{\omega_0}{2} \end{pmatrix}$

H(*t*) =

Introduction to Path-Sum

From Exponential to Ordered Exponential

Analytical results

Implementation in Mathematica

Implementation in Mathematica

t dependent matrix (sparse)

 μ w, D–J events, relaxation times...

in: DNP simulations

see: F. Mentink-Vigier et al., PCCP, 2017

\rightarrow factors random walks, gives simple cycles and paths, constructs the Path-Sum for all entries of a *given* partition

Implementation in Mathematica

40

- ► a new approach
- analytical expression for U(t)
- convergence
- non perturbative formulation
- partitions and scalability
- other theory/applications to come...

P.-L. Giscard

S. Pozza

Accelarated Neumann Series

Proposition 3.1. Let $I \subset \mathbb{R}$ and let $(t',t) \in I^2$ be two variables and let g(t',t) be a generalized function of t',t. Let $f(t',t) = \tilde{f}(t',t)\Theta(t'-t)$ be a function of t',t over I^2 and $K(t',t) := \tilde{a}(t')\tilde{b}(t)\Theta(t'-t)$. Let $\tilde{\alpha} := \int \tilde{K}(\tau,\tau)d\tau = \int \tilde{a}(\tau)\tilde{b}(\tau)d\tau$. Then the solution f of the linear

Volterra equation of the second kind f = g + K * f with kernel K is

$$f(t',t) = g(t',t) +$$
(10) $\tilde{a}(t') \int_{-\infty}^{\infty} \tilde{b}(\tau) \exp\left(\int_{\tau}^{t'} \tilde{a}(\tau')\tilde{b}(\tau')d\tau'\right) \Theta(t'-\tau)g(\tau,t) d\tau.$

Remark 3.1. In the (typical) case where g itself takes on the form $g(t',t) = \tilde{g}(t',t)\Theta(t'-t)$, in the expression of Eq. [10], $g(\tau,t)$ can be replaced with $\tilde{g}(\tau,t)$ with the outer integral running from t to t'. If instead one chooses $g(t',t) = \delta(t'-t)$, then the Volterra equation satisfied by f reads $f = 1_* + K * f$, that is f is the *-resolvent of K, $f = R_K$ and Eq. [10] simplifies to

$$R_K(t',t) = \delta(t'-t) + \tilde{a}(t')\tilde{b}(t)e^{\tilde{\alpha}(t')-\tilde{\alpha}(t)}\Theta(t'-t)$$

= $\delta(t'-t) + \tilde{K}(t',t)e^{\tilde{\alpha}(t')-\tilde{\alpha}(t)}\Theta(t'-t).$

In other terms, the *-resolvent of a kernel of the form $K(t',t) = \tilde{a}(t')\tilde{b}(t)\Theta(t'-t)$ is exactly available in closed form.

Proof. We proceed by induction on the Neumann series $f = (\sum_n K^{*n}) * g$. Convergence of this series is guaranteed whenever \tilde{a} and \tilde{b} are bounded over all compact subintervals of I, however existence of the final form for f is clearly independent from this assumption. In this situation this form can be understood as the analytic continuation of the original Neumann series.

Other applications in NMR

Exact solutions for the time-evolution of quantum spin systems under arbitrary waveforms using algebraic graph theory

Pierre-Louis Giscard

Université Littoral Côte d'Opale, UR 2597, LMPA, Laboratoire de Mathématiques Pures et Appliquées, Joseph Liouville, F-62100 Calais, France

Mohammadali Foroozandeh

Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK

Figure 2: Graph $G_{\mathscr{H}'}$ showing the structure of the quantum state space as imposed by the bipartite Hamiltonian \mathscr{H}' when partitioned as per eq. (24). Because the structure of $G_{\mathscr{H}'}$ and of the monopartite Hamiltonian graph $G_{\mathscr{H}}$ of Figure 1 differ only in the presence of a central loop on vertex 2, the path-sum formulation of the corresponding evolution operators will differ only in a single term representing this loop.

Cite as: arXiv:2205.05195 [quant-ph] (or arXiv:2205.05195v1 [quant-ph] for this version) https://doi.org/10.48550/arXiv.2205.05195

Numerical implementation for small matrices

The Volterra composition*

Þ

$$(f * g)(t', t) = \Theta(t' - t) \int_{t}^{t'} \tilde{f}(t', \tau) \tilde{g}(\tau, t) d\tau$$

$$(f * g)(t', t) \simeq \sum_{i \ge j \ge k} \underbrace{f(t_i, t_j)g(t_j, t_k)\Delta t}_{F_{ij}.G_{jk}\Delta t}$$

$$(he \text{ key point} \qquad Matrix \text{ product !} \\ \text{Triangular matrices} \qquad \bullet \\ \text{*-inverses : ordinary inverses of triangular matrices} \qquad \bullet \\ \text{well-conditioned (always)} \qquad 4$$

- ► accuracy ~ 10⁻⁶ (...towards Gauss quadrature ~ 10⁻¹⁶)
- ... beats standard ODE solver with same number of points
- >> Zassenhaus (even for small matrices...)

FLOQUET

▶ main goal \rightarrow get an **exact** form for **U(t)**

ZASSENHAUS

FER/TROTTER-SUZUKI

MAGNUS

► PATH-SUM is *exact* and PARTITIONS allow to *choose the dimension* of the working space from *H(t)* to *U(t)*

Scale invariance

Take a **partition** of a spin system in a set of (*smaller*, *independent*) sub-systems

the *exact* evolution of the *entire* spin system as functions of the evolutions of the *isolated sub-systems* is given by **Path-Sum**

(though **non contiguous blocks** in H(t) matrix!)

- the EXACT result is given by a FINITE number of terms
- the matrix nature of the problem is fully replaced when working on entries
- or, one can keep it partially... \rightarrow **PARTITIONS**
- ► hard work $\rightarrow [1_* (* * * \cdots)]^{*-1}$
- ▶ hopefully: the *Neumann series* give the analytical solution at any order with unconditional convergence (not to be "found" ... just apply a "recipe")
- the convergence of the Neumann series is superexponential
- a convenient numerical approach: linear Volterra equations (2nd kind)

$$D_x^2 u + \left[\frac{\gamma}{x} + \frac{\delta}{x-1} + \frac{\epsilon}{x-a}\right] D_x u + \left[\frac{\alpha\beta x - q}{x(x-1)(x-a)}\right] u = 0$$

<u>ex</u>.: the best obtainable solution for the **general 2** \times **2** matrix (closed form for the **confluent Heun's special functions**) (see Q. Xie, 2018) 49

- ▶ 1st explosion: related to the size of H(t) with many-body systems (Q nature)
- ▶ 2nd explosion: related to the *time* needed to isolate the *primes* (*g* nature)

Lanczos-Path-Sum (numerical) fixes the 2nd explosion:

Idea behind: initial $H(t) \rightarrow time$ dependent *tridiagonal matrix*

<u>expectations</u>: to reach excellent convergence with the breadth of the continued fraction and why not ?... "Circumvent" the 1st explosion

▶ for finite *G*: the decomposition of *W* in primes (e.g. simple paths & cycles) for the □ (nested) operation exists and is unique

► to determine the existence of a prime of *length L* is *NP-complete* (*no*(?) algorithm with polynomial complexity)

to count them is #P-complete (the same but for counting problems)

► to count them for a fixed *length L* is *#W[1]-complete* (same as *#P-complete* but with parameters, such as *L*, taken into account)

BUT: for sparse g : counting becomes polynomial in the max degree of g!

see: P. L. Giscard et al., Algorithmica, 2019

► fundamentally: $\mathcal{R}_{esolvent}[A(t)]_{*}$ product = $\frac{d}{dt}OE[A(t)] \rightarrow Path-Sum$

each entry of A(t) must be bounded on [0,t], a bounded interval of time

▶ if the entries are *not bounded*, Path-Sum still work ... but perhaps the Neumann series will *not converge*

- continuity is not necessary
- ► *if continuity*: Volterra equations are much *easier* to handle

► A(t) can be Hermitian *or not*, periodic *or not* ... and entries can be: matrices, quaternions, octonions, division rings...

► finite A(t): sufficient condition for finite breadth of the continued fraction

► NOT a necessary condition: ex. a *finite* number of *simples cycles* in an *infinite* matrix

in some cases, Path-Sum can still be applied on *infinite matrices*: *strong symmetry*, e.g. invariance by translation (soluble *non-linear* Volterra equations)

In other words:

■ *infinity* of cycles ... but *self-similar* like in a *fractal*

the corresponding continued fraction is of *finite breadth*

► take one entry: $f(t) = OE[A(t)]_{ij}$

• **Taylor** series: expansion in t^n *i.e.* $f(t) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} t^n$

ex.: $\frac{1}{1-t} = \sum_{n=0}^{\infty} t^n = 1 + t + t^2 + \dots + t^n + \dots$ with **r = 1** (*radius of CV*)

• Neumann series: uses the * -product, i.e. $f(t) = \sum_{n=0}^{\infty} f^{*n}$

each order contains functions represented by intinite Taylor series

r = ∞ (!) with *uniform* & *superexponential* CV

starting with a *pure state* with 1 up-spin (total: N, *any geometry*)
Path-sum contains all *N-order correlations*

 \rightarrow if $\omega_{rot} = 0$

all terms of the Neumann series are *explicitly* known

 \rightarrow if $\omega_{rot} \neq 0$

still *analytical* up to the CV of the series to the solution

starting with a *pure state* with 4 or 5 up-spin is still tractable (*i.e.* no exponential explosion) ▶ Pure state: if *k* up-spins over N and *k* << N → space of states dim. $\approx N^k$ (suppression of the exponential explosion)

▶ Partial polarization: a *cut-off* is needed → if $\left|\frac{int_{i,j}}{intV} \le \frac{1}{cut-off}\right|$ then $int_{i,j} = 0$

cut-off : « high » for chains but decreases for more « dense » spin systems

next target: to extend **Path-Sum** to **mixed states** *via* a **decomposition on pure states**

N spin chains and H_D

P.-L. Giscard, C. Bonhomme, ArXiv 2019

Feynman paths and diagrams

« With application to quantum mechanics, path integrals suffer most grievously from a serious defect. They do not permit a discussion of spin operators or other such operators in a simple and lucid way » (**R.P. Feynman**)

Path-sum can be used starting from the Lagrangian with action as weight on a given W

Path-sum can be used starting from the *Hamiltonian* with *energy* as *weight* on a given *W*

► Feynman diagrams: **W** of **G** in the state space (but continuous)

Path-sum performs a formal re-summation of an infinite number of *W*, *i.e.* Feynman diagrams !

Lanczos algorithm \rightarrow classical tridiagonalization

Pozza, Giscard 2020- 2022

***-** Lanczos Path-Sum algorithm

Matching Moment Property

$$w^{H}(A^{*j})v = e_{1}^{H}(\mathsf{T}_{n}^{*j})e_{1}, \quad for \quad j = 0, \dots, 2n-1$$

approximation of individual entry

$$w^{H} \mathsf{U}(t',t) \, v \approx e_{1}^{H} \mathsf{U}_{n}(t',t) \, e_{1} = \Theta(t'-t) \int_{t}^{t'} \mathsf{R}_{*}(\mathsf{T}_{n})_{1,1}(\tau,t) \, \mathrm{d}\tau;$$
$$\mathsf{R}_{*}(\mathsf{T}_{n})_{1,1}(t',t) = \left(1_{*} - \alpha_{0} - \left(1_{*} - \alpha_{1} - (1_{*} - \ldots)^{*-1} * \beta_{2}\right)^{*-1} * \beta_{1}\right)^{*-1}$$