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Standard equations in NMR

𝝏

𝝏 
│𝜳  > = −

ⅈ

𝒉
𝑯  │𝜳  >

■ Schrödinger equation

■ Liouville – von Neumann equation

𝒅

𝒅 
ෝ𝝆  = −

ⅈ

𝒉
[𝑯  , ෝ𝝆  ]

state vector

density operator

→ evolution operator

→ « exponential » of a (time dependent) matrix

𝑼 𝐭′, 𝐭 = 𝐎𝐄 −𝐢𝑼 𝐭′, 𝐭 = 𝑻 𝐞𝐱𝐩 −𝐢න
 

 ′

𝑼 𝝉 𝐝𝝉 

Dyson time-ordering operator



► a general mathematical problem: coupled LDE with non-constant

coefficients a11(t’), a12(t’)…

3

A(t’) = 
𝑎11 𝑡

′ 𝑎12 𝑡
′ …

𝑎21 𝑡
′ 𝑎22 𝑡

′ …
… … …

N

N (finite)

bounded (over [ t , t’ ])

The evolution operator U(t)



The evolution operator U(t) and the ordered exponential

Magnus Floquet
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perturbative methods, convergence (?)

𝑼 𝐭′, 𝐭 = 𝐎𝐄 −𝐢𝑼 𝐭′, 𝐭 = 𝑻 𝐞𝐱𝐩 −𝐢න
 

 ′

𝑼 𝝉 𝐝𝝉 

Dyson time-ordering operator



Outline

■ Introduction to Path-Sum

■ From Exponential to Ordered Exponential

■ Analytical results

■ Implementation in Mathematica
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An introduction to Path-Sum

G = ( Vertex set, Edge set )

AG = 

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

0 𝑎32 0
1

2 3

   

   

   

   

   

   = 0

   = 0

   

   

self-loop

directed edge

entry: weight on a directed edge

Adjacency finite matrix AG

ex.: walk W1 ← 2 (from V2 to V1) of length 4

1

2 3

   

   

   

   

start …

… end

6   
Giscard, 2012



the powers of the Adjacency matrix AG on a graph G generate

ALL weighted WALKS W on G

N. Biggs: Algebraic Graph Theory (1993)

AG = 

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

0 𝑎32 0
= 

⋯
⋮ ⋱ ⋮

⋯
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   ×    +    ×    +    ×    

weighted W of length 2 from V2 to V1

(1 ← 2)
2
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      +          +          S =
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An introduction to Path-Sum

– time-independent matrices



Simple paths and simple cycles

◊ simple path P (self avoiding walk): W whose V are all distinct  

◊ simple cycle C (self avoiding polygon): W whose endpoints are identical and intermediate

V are all distinct and different from the endpoints

« Fundamental Theorem of Arithmetic on G » (Giscard, 2012)

►W factor uniquely into prime elements, i.e. simple paths and simple cycles

► if G is finite the number of primes is finite

► resummation of all W involves a finite number of operations: sum on simple 

paths and continuous fraction of simple cycles with vertex removal
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P C

G →
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Resummation of W on a graph: an illustration

𝒄 + 𝒄 
 + 𝒄 

 … =
 

 − 𝒄 

𝒄 

𝒄 

𝒄 

𝒄 + 𝒄 
 + 𝒄 + 𝒄 𝒄 𝒄 … =

 

 −
 

 − 𝒄 
𝒄 

 

 − 𝒄 − 𝒄 

𝒄 

𝒄 

𝒄 + 𝒄 
 + 𝒄 𝒄 + ⋯ =

V a

V a

V a

(fraction)

(fraction)

(continued fraction)
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 −
 

 −
𝒄 

 − 𝒄𝟒

 
 − 𝒄 

𝒄 



G

 W, 𝒄ⅈ =

V a
𝒄 

𝒄 
𝒄 𝒄𝟒

if G is finite: the continued fraction is unique and finite

Resummation of W on a graph: an illustration

(continued fraction)



Power series of AG

𝑭 𝐀G 𝝎𝜶= σ k =𝟎
∞ 𝒄k σ WG, 𝜶𝝎; k

 𝝎𝒉𝒌
…×  𝒉 𝒉 

×  𝒉 𝜶

power series of AG all weighted walks W from Va to V of length k

(AG)
k

= 
⋯

⋮ ⋱ ⋮
⋯

(AG)
k
 aremember: 

each element of AG
k

is given by the

sum of the weighted W of length k (standard × operation) 



Power series of AG

(AG)
k

= 
⋯

⋮ ⋱ ⋮
⋯

(AG)
k
 aremember: 

each element of AG
k

is given by the

sum of the weighted W of length k (standard × operation) 

power series of AG all weighted walks W from Va to V  of length k

Path-Sum
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« Fundamental Theorem of Arithmetic » on G (Giscard, 2012)

► W factor uniquely into prime elements, i.e. simple paths and simple cycles

► if G is finite the number of primes is finite

► resummation of all W involves a finite number of operations: sum on simple 

paths and continuous fraction of simple cycles with vertex removal



Power series of AG
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Path-Sum

𝑭 𝐀G 𝝎𝜶= σ k =𝟎
∞ 𝒄k σ WG, 𝜶𝝎; k

 𝝎𝒉𝒌
…×  𝒉 𝒉 

×  𝒉 𝜶

power series of AG all weighted walks W from Va to V of length k

sum on the finite set of 

simple paths P of length l

edge weight effective V weight

sum over the finite set of simple cycles C
(continued fraction of finite breadth)

Giscard, SIAM, 2013



Some operations on matrices AG using Path-Sum
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1 2 1 0
3 4 −8 0
−5 9 𝟓 −3
0 0 1 6

entries: real, complex numbers, 

matrices, blocks of matrices….

𝐴 =

10.37 19.31 −4.78 51.95
43.38 −4.49 −42.81 154.68
−4.92 44.55 − 𝟓. 𝟕𝟎 −35.24
18.96 49.55 11.74 363.50

𝑒𝐴=

ex.: matrix EXPONENTIAL



Some operations on matrices AG using Path-Sum

1 2 1 0
3 4 −8 0
−5 9 𝟓 −3
0 0 1 6

𝐴 =

15

one partition of A (among 𝑩𝟒 =  𝟓 



Some operations on matrices AG using Path-Sum

1 2 3

𝟓 6

1 2 1 0
3 4 −8 0
−5 9 𝟓 −3
0 0 1 6

𝐴 =

Path 3

16

3 simple cycles (C ) from V2 → V2

Descending Ladder Principle (DLP)



Some operations on matrices AG using Path-Sum
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1 2 3

𝟓 6

Path 3

3 simple cycles (C ) from V2 → V2



Some operations on matrices AG using Path-Sum
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1 2 1 0
3 4 −8 0
−5 9 𝟓 −3
0 0 1 6

𝐴 =

another partition of A (among 𝑩𝟒 =  𝟓 



Some operations on matrices AG using Path-Sum
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1 2 1 0
3 4 −8 0
−5 9 𝟓 −3
0 0 1 6

𝐴 =

=

1 2

1 1
−5 𝟓

4 0
0 6

2 0
9 −3

3 −8
0 1

K 2

2 simple cycles (C ) from V1 → V1



Some operations on matrices AG using Path-Sum
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=

1 2

1 1
−5 𝟓

4 0
0 6

2 0
9 −3

3 −8
0 1

K 2

2 simple cycles (C ) from V1 → V1



Some operations on matrices AG using Path-Sum
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1 2 3

𝜶 𝜶 𝜶 

𝜷 𝜷 

𝜹 𝜹 

Path 3

ex.: matrix INVERSE

=
 

∝ − 𝜷 
 

𝜶 − 𝜷 
 
𝜶 

𝜹 

𝜹 

self-loop 

1 self-loop 

2
self-loop 

3

1 → 2 → 1

2 → 3 → 2

2008

easy to handle Path-Sum for Path (tridiagonal matrices)



Summary (partial)
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► a finite time-independent matrix AG associated to G (bounded entries)

► each entry of a power series of AG is given by a finite number of

operations by using Path-Sum (with × product)

◘ the matrix nature of the problem is fully replaced when working on entries

◘ or, one can keep it partially → PARTITIONS (scalability)

◘ calculations of resolvents by Path-Sum lead to CLOSED-form expressions

when AG is time-independent
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■  𝒋 𝑼    ⅈ corresponds to the sum of all walks W from Vi to Vj on G

including all possible jumping times for each transition between vertices

of G

2424

ex.: consider the 3rd term of the Picard (Dyson) iteration:

→ A(t1) A(t2) A(t3)

ex.: the {1,4} entry of the matrix reads:

→ [A(t1) A(t2) A(t3)]{1,4} = σⅈ,𝒌𝑨     ,ⅈ 𝑨    ⅈ,𝒌 𝑨    𝒌,𝟒

weight of 1 → i Edge weight of i → k Edge …

→ W from 1 to 4 of length 3

finally: time integration over t1, t2 and t3: all W, for

all possible times, for all jumps between vertices

An intuitive interpretation of the Ordered Exponential (time depend. matrix)



Ordered exponential

2525

Path-Sum

► resummation of all W involves a finite number of operations: sum on simple 

paths and continuous fraction of simple cycles with vertex removal

Giscard, J. Math. Phys., 2015 

OE[A](t’,t) =         𝑡 , 𝑡  a

Path-Sum

S ALL weighted walks ← on AG

but using  −product

instead of ×

… and [  −    ⋯ ] − = σ𝒏≥𝟎    ⋯  𝒏

Neumann series (analytical)                                                         

  𝝎   [𝑨G]  
′,    𝜶 >  𝑨G  ′,  =

… 

… 

Kernel, K

ij

ij



Time dependent 2 × 2 matrix

[  −    ⋯ ] − = 

𝒏≥𝟎

   ⋯  𝒏

𝒇  𝒈 = න
 

 ′

𝒇  ′, 𝝉 𝒈 𝝉,  𝒅𝝉

OE[A](t’,t) = 
 
 ′
𝑮𝑲 ,   ′, 𝝉 𝒅𝝉       

′,   

      
′,    

 ′
𝑮𝑲 ,   ′, 𝝉 𝒅𝝉

► END of the continued fraction !

► finite sum on C

► END !

► finite sum on simple P

26

 ⅈ𝒋   

► END of the continued fraction !

► finite sum on C

► END !

► finite sum on simple P

► END of the continued fraction !

► finite sum on C

► END !

► finite sum on simple P

K2

continuous

fraction  on 

simple cycles

sum on simple 

paths

Kernel, K



Summary (partial)
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Path-Sum solution

► exact representation 

(transcendent, special functions…) 

► non perturbative, super exponentially CV

► always closed form in

► Neumann series: analytic, closed form at

fixed accuracy
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Linearly polarized excitation, Bloch-Siegert (BS) effect: analytical solution

entries of H(t)Kernel K

*-Resolvent

all 

individual

entries of 

U(t) are 

now

available

« shape » → Path-Sum

above terms and simple paths

𝑲↑
  𝒏+  

= න
 

 ′

𝑲↑
 𝒏

 ′, 𝝉 𝑲↑
 𝝉,  𝒅 𝝉



Linearly polarized excitation, Bloch-Siegert (BS) effect

30Giscard, Bonhomme, Phys. Rev. Res., 2020

Τ𝜷 𝝎 ≪  𝒘𝒆 𝒌

Τ𝜷 𝝎 ≫    𝒓𝒐𝒏𝒈
ON and OFF resonance

P
(t

)
tr

a
n

s
it
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n

p
ro

b
a
b

il
it

y

► visualizing the solution at analytical / numerical level



Linearly polarized excitation, Bloch-Siegert (BS) effect
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► analytical formula 

order 0 of the Path-Sum solution

spin flip duration,   𝒇

  
𝒇

Τ𝜷 𝝎 ≪  

Τ𝜷 𝝎

P
(t

)
tr

a
n

s
it

io
n

p
ro

b
a

b
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𝝎 
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(Pleshchinski, Tagirov, J. Math. Sc., 1995)

► the solution of a linear Volterra equation of second kind with separable K 

is necessarily separable

𝑮𝜶𝜶  ′,  = [  −  𝜶𝜶 −  𝜶𝝎  [  −  𝝎𝝎] −1   𝝎𝜶 − ⋯] −1

conclusion: K(t’,t) is separable

function of one

time variable     

separable     

separable     

Separable (degenerate) kernel K

CLOSED-form

K (t’, t) 
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A fundamental consequence of separability: Accelarated Neumann Series

a series related to ORDINARY resolvents (here u, v are formal variables)

iteration…

« accessible »

formal series
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An interesting consequence of separability: Accelarated Neumann Series

a series related to ORDINARY resolvents (here u, v are formal variables)

iteration…

« accessible »

formal series

► extension to non-commutative *- product

► speed up of convergence if

 𝑻 > = 𝟎

►𝐑𝐊 𝐭′, 𝐭 𝐢𝐧 𝐭𝐞𝐫𝐦𝐬 𝐨𝐟 𝐑𝐊𝐢
𝐭′, 𝐭 𝐚𝐥𝐥 𝐚𝐜𝐜𝐞𝐬𝐬𝐢𝐛𝐥𝐞

CLOSED-form
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Giscard, J. Integral Equations  Appl. 2020

Giscard, Bonhomme, Phys. Rev. Res. 2020

in the case of ultra-strong regime, i.e. Τ𝜷 𝝎𝟎 ≫  𝐚𝐧𝐝  𝑻 > = 𝟎

the first term of the 

Accelarated analytical

Neumann Series is

sufficient

ON and OFF resonance

𝝎 

Linearly polarized excitation, Bloch-Siegert (BS) effect



Linearly polarized excitation, Bloch-Siegert (BS) effect

36

Accelarated Neumann Series → b /  0 >> 1,  𝑻 > = 𝟎

 𝑻 > = 𝟎

► predictions
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Implementation in Mathematica

38

t dependent matrix (sparse)

mw, D-J events, relaxation times…

in: DNP simulations

see: F. Mentink-Vigier et al., PCCP, 2017



Implementation in Mathematica
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→ factors random walks, gives simple cycles and paths, constructs the Path-Sum for all entries

of a given partition

K 10

entries: 1 × 1 matrices



Implementation in Mathematica
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OE[A(t’,t)] (*- products):

entry {8,8}

entry {5,6}



► a new approach

► analytical expression for U(t)

► convergence

► non perturbative formulation

► partitions and scalability

► other theory/applications to come…

41

Path-Sum

Conclusions and acknowledgments

P.-L. Giscard

S. Pozza
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Accelarated Neumann Series
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Other applications in NMR



Numerical implementation for small matrices

45

Pozza, Giscard (2019, 2020)

the key point

well-conditioned (always)



Heun functions (Giscard et al., , IEEE, 2021)
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►newly implemented in

- version 12)

►accuracy ~ 10-6 (…towards Gauss quadrature ~ 10-16)

►… beats standard ODE solver with same number of points

►>> Zassenhaus (even for small matrices…)



Path-Sum vs other methods
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► main goal → get an exact form for U(t)

► FLOQUET ZASSENHAUS MAGNUS PATH-SUM

FER/TROTTER-SUZUKI

► usually: on H(t) → choice in

► PATH-SUM is exact and PARTITIONS allow to choose the dimension of

the working space from H(t) to U(t)



Scale invariance

48

Take a partition of a spin system in a set of (smaller, independent)

sub-systems

sub-system n°1

sub-system n°2

sub-system n°3

Magnus or Floquet or Fer or …

Magnus or Floquet or Fer or …

Magnus or Floquet or Fer or …

the exact evolution of the entire spin system as functions of the 

evolutions of the isolated sub-systems is given by Path-Sum

(though non contiguous blocks in H(t) matrix!)



WHY does Path-Sum work?

49

► the EXACT result is given by a FINITE number of terms

► the matrix nature of the problem is fully replaced when working on entries

► or, one can keep it partially… → PARTITIONS

► hard work → [  −    ⋯ ] − 

► hopefully: the Neumann series give the analytical solution at any order with

unconditional convergence (not to be “found” … just apply a "recipe")

► the convergence of the Neumann series is superexponential

► a convenient numerical approach: linear Volterra equations (2nd kind)

ex.: the best obtainable solution for the general 2 × 2 matrix (closed form

for the confluent Heun’s special functions) (see Q. Xie, 2018)



Exponential explosions
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► 1st explosion: related to the size of H(t) with many-body systems (Q nature)

► 2nd explosion: related to the time needed to isolate the primes (G nature)

Lanczos-Path-Sum (numerical) fixes the 2nd explosion:

Idea behind: initial H(t) → time dependent tridiagonal matrix

expectations: to reach excellent convergence with the breadth of the

continued fraction and why not ?... "Circumvent" the 1st explosion

P.-L. Giscard et al., 2019, in preparation



Complexity theory
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► for finite G : the decomposition of W in primes (e.g. simple paths &

cycles) for the ◘ (nested) operation exists and is unique

► to determine the existence of a prime of length L is NP-complete (no(?)

algorithm with polynomial complexity)

► to count them is #P-complete (the same but for counting problems)

► to count them for a fixed length L is #W[1]-complete (same as #P-complete but

with parameters, such as L, taken into account)

► BUT: for sparse G : counting becomes polynomial in the max degree

of G !

see:  P. L. Giscard et al., Algorithmica, 2019



Mathematical conditions on A(t) for Path-Sum to be valid -1

52

► fundamentally: Resolvent[A(t)]
 𝐩𝐫𝐨𝐝𝐮𝐜𝐭 =

𝐝

𝐝𝐭
𝐎𝐄 𝐀 𝐭 → Path-Sum

► each entry of A(t) must be bounded on [0,t], a bounded interval of time

► if the entries are not bounded, Path-Sum still work … but perhaps the

Neumann series will not converge

► continuity is not necessary

► if continuity: Volterra equations are much easier to handle

► A(t) can be Hermitian or not, periodic or not … and entries can be:

matrices, quaternions, octonions, division rings…



Mathematical conditions on A(t) for Path-Sum to be valid -2

53

► finite A(t): sufficient condition for finite breadth of the continued fraction

► NOT a necessary condition: ex. a finite number of simples cycles in an infinite matrix

► in some cases, Path-Sum can still be applied on infinite matrices: strong symmetry, e.g.

invariance by translation (soluble non-linear Volterra equations)

In other words:

■ infinity of cycles … but self-similar like in a fractal

■ the corresponding continued fraction is of finite breadth



Taylor and Neumann series
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► take one entry: f t = OE[A t ]𝐢𝐣

► Taylor series: expansion in 𝑡𝑛 i.e. 𝑓 𝑡 = σ𝑛=0
∞ 𝑓 𝑛  0 

𝑛!
𝑡𝑛

ex.:
1

1−𝑡
= σ𝑛=0

∞ 𝑡𝑛 = 1 + 𝑡 + 𝑡2 + ⋯+ 𝑡𝑛 + ⋯ with r = 1 (radius of CV)

► Neumann series: uses the  −product, i.e. 𝑓 𝑡 = σ𝑛=0
∞ 𝒇 𝒏

each order contains functions represented by intinite Taylor series

r = ∞ (!) with uniform & superexponential CV



N spins starting with a pure state
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► starting with a pure state with 1 up-spin (total: N, any geometry)

Path-sum contains all N-order correlations

→ if 𝝎𝒓𝒐 = 𝟎

all terms of the Neumann series are explicitly known

→ if 𝝎𝒓𝒐 ≠ 𝟎

still analytical up to the CV of the series to the solution

► starting with a pure state with 4 or 5 up-spin is still tractable

(i.e. no exponential explosion)



Pure state vs partial polarization

56

► Pure state: if k up-spins over N and k << N → space of states dim. ≈ 𝑵𝒌

(suppression of the exponential explosion)

► Partial polarization: a cut-off is needed → if │
𝑖𝑛𝑡𝑖,𝑗

𝑖𝑛𝑡𝑉
≤

1

𝒄𝒖 −𝒐𝒇𝒇
│ then

𝑖𝑛𝑡𝑖,𝑗= 0

cut-off ∶ « high » for chains but decreases for more « dense » spin systems

next target: to extend Path-Sum to mixed states via a decomposition on

pure states



P.-L. Giscard, C. Bonhomme, ArXiv 2019 57

t = 0

H1

H2
H3

H4…
↑

↑ ↑
↑

H10…↑

pure state

…H30…↑

N = 30

N = 10
t(ms)

t(ms)
t(ms)

<
b

a
c

k
 t

o
 1

p
ro

b
.>

<
b

a
c

k
 t

o
 1

p
ro

b
.>

<
b

a
c
k
 t

o
 1

p
ro

b
.>

𝝎𝒓𝒐 = 𝟎

N spin chains and 𝑯𝑫
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Feynman paths and diagrams

« With application to quantum mechanics, path integrals suffer most

grievously from a serious defect. They do not permit a discussion of spin

operators or other such operators in a simple and lucid way » (R.P. Feynman)

► Path-sum can be used starting from the Lagrangian with action as weight on

a given W

► Path-sum can be used starting from the Hamiltonian with energy as weight

on a given W

► Feynman diagrams: W of G in the state space (but continuous)

► Path-sum performs a formal re-summation of an infinite number of W,

i.e. Feynman diagrams !



59ex.: entry {v w}

a0

a1

an-1

(b1,1*)

Graph of A → Path of Tn

Numerical implementation for larger matrices

Lanczos algorithm → classical tridiagonalization

 - Lanczos Path-Sum algorithmPozza, Giscard 

2020- 2022

(b2,1*)
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Numerical implementation for larger matrices

Matching Moment Property

approximation of

individual entry


