Ecole Thématique :

« Magnétisme et Résonances Magnétiques : Outils et Applications »

31 mai —> 04 Juin 2015

Principes de base en

Résonance Magnétique Nucléaire (RMN)

Christian Bonhomme

christian.bonhomme@upmc.fr

Université P. et M. Curie, Paris 6, Paris, France

1

SMiLES group

Spectroscopy, Modelling, interfaces for naturaL Environment and health topicS.

Spectroscopic and numerical approaches for synthetic and natural materials.

Nuclear Magnetic Resonance

The Nobel Prize in Physics 1944 Isidor Isaac Rabi

\rightarrow atomic beams

Isidor Isaac Rabi

The Nobel Prize in Physics 1944 was awarded to Isidor Isaac Rabi "for his resonance method for recording the magnetic properties of atomic nuclei".

The Nobel Prize in Physics 1952 Felix Bloch, E. M. Purcell	
The Nobel Prize in Physics 1952	
Felix Bloch	
E. M. Purcell	

 « ... In this method, developed independently by two research groups headed respectively
 by F. Bloch and E. M. Purcell, the detection of the passage through the resonance is based on a modification occuring at resonance in the electromagnetic device itself that « drives » the resonant transition of interest... »
 in: Principles of Nuclear Magnetism,

A. Abragam, 1961 (CEA, Collège de France)

Felix Bloch

Edward Mills Purcell

The Nobel Prize in Physics 1952 was awarded jointly to Felix Bloch and Edward Mills Purcell "for their development of new methods for nuclear magnetic precision measurements and discoveries in connection therewith"

→ condensed matter (high P gas, solutions, solids)

A. Abragam 3

Nuclear Magnetic Resonance

Outline

- the NMR experiment
- 12. M. Goldman, J. Magn. Reson. 149, 160, 13. Encyclopedia of NMR vol. 6, p. 3980 Mathematical treatment of NMR[®]

II. Selected contributions

The fathers

69, 127, 1946.

I. Encyclopedia of NMR, 10 vol., 2012

Principes de base de la RMN C. Bonhomme (UPMC)

Free For NMAR and N

- Relaxation
- Solid State NMR
- Gradients and imaging

•н

Angular momentum

Magnetic field – Zeeman effect

Spin

Atomic structure

Spin

10

Spin number I

 $I \neq 0 \longrightarrow NMR \dots$

receptivity: $D_{P} = \frac{I\gamma_{X}I^{3} (\%X) (I_{x}+1) I_{X}}{\gamma_{1H}^{3} (\%^{1}H) (I_{1H}+1) I_{1H}}$

¹³C: I = ½ (1.1%) D_P(¹³C) =0.00017... !

The NMR experiment

Static B₀ field – Larmor frequency

F. Bloch et coll., Phys. Rev., 69, 127 (1946)

-CAR

1000

Purcell's vision

Resonance Absorption by Nuclear Magnetic Moments in a Solid

E. M. PURCELL, H. C. TORREY, AND R. V. POUND* Radiation Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts December 24, 1945

TN the well-known magnetic resonance method for the L determination of nuclear magnetic moments by molecular beams,1 transitions are induced between energy levels which correspond to different orientations of the nuclear spin in a strong, constant, applied magnetic field. We have observed the absorption of radiofrequency energy. due to such transitions, in a solid material (paraffin) containing protons. In this case there are two levels, the separation of which corresponds to a frequency, v. near 30 megacycles/sec., at the magnetic field strength, H, used in our experiment, according to the relation $h\nu = 2\mu H$. Although the difference in population of the two levels is very slight at room temperature $(h\nu/kT\sim 10^{-5})$, the number of nuclei taking part is so large that a measurable effect is to be expected providing thermal equilibrium can be established. If one assumes that the only local fields of importance are caused by the moments of neighboring nuclei, one can show that the imaginary part of the magnetic permeability, at resonance, should be of the order $h\nu/kT$. The absence from this expression of the nuclear moment and the internuclear distance is explained by the fact that the influence of these factors upon absorption cross section per nucleus and density of nuclei is just cancelled by their influence on the width of the observed resonance.

A crucial question concerns the time required for the establishment of thermal equilibrium between spins and

in: Spin Dynamics, M. H. Levitt., 2002

« … There the snow lay around my doorstep – great heaps of protons quietly precessing in the Earth's magnetic field. To see the world for a moment as something rich and strange is the private reward of many discovery … »

15

Macroscopic magnetization – T₁ relaxation

Resonance

19

Summary

Man, Encyclopedia of analytical chemistry, 2000, 12228.

CURRENT CONTENTS®

© 1983 by ISI .

The Nobel Prize in Chemistry 1991

Nobel Prize Award Ceremony

Richard R. Ernst

The Nobel Prize in Chemistry 1991 was awarded to Richard R. Ernst "for his contributions to the development of the methodology of high resolution nuclear magnetic resonance (NMR) spectroscopy".

Fourier transform nuclear magnetic resonance (NMR) has become the accepted technique for recording NMR spectra in liquids and in solids. Both its superior sensitivity and its versatility have been essential for the remarkable success of NMR in numerous fields from physics to medicine. [The SCI^{\oplus} indicates that this paper has been cited in over 330 publications since 1966.]

"Looking back, it is not too astonishing that our paper got many citations. The message is simple and attractive. To the user it saves time and money and for the instrument companies it allowed them to increase returns by the development of new instruments."

Fourier Transform NMR

Fourier transformation and data processing

1° digitization

time domain (FID) \rightarrow frequency (spectrum)

Time Duration		
Finite	Infinite	
Discrete FT (DFT)	Discrete Time FT (DTFT)	discr.
$X(k) = \sum_{n=0}^{N-1} x(n) e^{-j\omega_k n}$	$X(\omega) = \sum_{n=1}^{+\infty} x(n)e^{-j\omega n}$	time
$\substack{n=0\\k=0,1,\ldots,N-1}$	$\omega \in [-\pi, +\pi)$	n
Fourier Series (FS)	Fourier Transform (FT)	cont.
$X(k) = \frac{1}{F} \int_0^P x(t) e^{-j\omega_k t} dt$	$X(\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt$	time
$k=-\infty,\ldots,+\infty$	$\omega \in (-\infty, +\infty)$	t
discrete freq. k	continuous freq. ω	

Cooley–Tukey FFT algorithm 23

2° discrete FFT (1965, Princeton)

James Cooley

John Tukey

3° lineshape and phase

time domain (FID) \rightarrow frequency (spectrum)

4° phase correction

then ... manipulate the FID ?

1° weighting funtions

2° other weighting functions

3° truncation

4° zero filling

Processing NMR Data: Window Functions

William D. Wheeler, Ph.D.

Outline

- Nuclear spin the NMR experiment
- Mathematical treatment of NMR
- Multidimensional NMR
- Relaxation
- Solid State NMR
- Gradients and imaging

Quantum mechanics applied to NMR

Man, Encyclopedia of analytical chemistry, 2000, 12228.

Internal interactions

Frydman, Encyclopedia of NMR, supp. Vol., 263.

Full NMR hamiltonians in the context of QM external spin interactions $\mathbf{A}_{\mathbf{A}_{0}} = -\gamma \mathbf{B}_{\mathbf{0}} \mathbf{I}_{\mathbf{z}} = -\Sigma \gamma^{j} \mathbf{B}_{\mathbf{0}} \mathbf{I}_{\mathbf{z}}^{j}$ **Zeeman interaction** "in recognition of the extraordinary services they rendered by the researches into the influence of magnetism $\mathbf{A}_{\mathsf{RF}} = -\gamma \mathbf{B}_{1} \mathbf{I}_{x} \text{ for an } x \text{ pulse}$ upon radiation phenomena", **RF field: ex.** Physics, 1902 (with Lorentz) $\mathbf{A}_{\mathsf{B}_{\mathsf{P}}\mathsf{c}}^{\mathsf{A}} = -\gamma \mathbf{B}_{1} (-\mathbf{I}_{\mathsf{x}}) \text{ for an } -\mathbf{x} \text{ pulse } \dots$ $\mathbf{\hat{H}}_{arad}^{j}(\mathbf{r}, t) = -\gamma^{j} \mathbf{G}_{x}(t) \mathbf{x} \mathbf{\hat{I}}_{z}^{j}$ for gradient \mathbf{G}_{x} along x-axis gradient field $\mathbf{\hat{H}}_{arad}^{j}(\mathbf{r}, t) = -\gamma^{j} \mathbf{G}_{y}(t) \mathbf{y} \mathbf{\hat{I}}_{z}^{j} \text{ for gradient } \mathbf{G}_{y} \text{ along } y\text{-axis}$ $\mathbf{\hat{H}}_{arad}^{j}(\mathbf{r}, t) = -\gamma^{j} \mathbf{G}_{z}(t) \mathbf{z} \mathbf{\hat{I}}_{z}^{j} \text{ for gradient } \mathbf{G}_{z} \text{ along } z\text{-axis}$

internal spin interactions

chemical shift
$$\hat{H}_{cs} = \gamma \,\hat{\vec{\mathbf{I}}} \sigma \,\vec{\mathbf{B}}_0 = \gamma (\hat{I}_x \sigma^{LF}_{xz} + \hat{I}_y \sigma^{LF}_{yz} + \hat{I}_z \sigma^{LF}_{zz}) B_0.$$

indirect J coupling $\hat{H}_{J} = 2\pi \hat{I}_{j} J \hat{I}_{k}$

dipolar coupling
$$\hat{H}_{D} = -\frac{\mu_{0}}{4\pi} \hbar \sum_{all \ j,k \ pairs} \gamma_{j} \gamma_{k} \frac{3(\hat{\vec{I}}^{j} \cdot \vec{r}_{jk}/r_{jk})(\hat{\vec{I}}^{k} \cdot \vec{r}_{jk}/r_{jk}) - \hat{\vec{I}}^{j} \cdot \hat{\vec{I}}^{k}}{(r_{jk})^{3}}$$
$$=: \sum_{all \ j,k \ pairs} \hat{\vec{I}}^{j} D^{jk} \hat{\vec{I}}^{k}$$
$$\omega_{d} := \frac{\mu_{0}}{4\pi} \hbar \frac{\gamma_{1} \gamma_{2}}{(r_{1,2})^{3}} = 2\pi \ 122 \ \text{kHz} \ \frac{\gamma_{1}}{\gamma^{^{1}\text{H}}} \frac{\gamma_{2}}{\gamma^{^{1}\text{H}}} (\frac{1}{(r_{1,2}/1 \ \text{\AA})^{3}}) (r_{2}/1 \ \text{\AA})^{3} (r_{2}/1 \ \text{\AA})^{3}} = 2\pi \ 122 \ \text{kHz} \ \frac{\gamma_{1}}{\gamma^{^{1}\text{H}}} \frac{\gamma_{2}}{\gamma^{^{1}\text{H}}} (r_{1,2}/1 \ \text{\AA})^{3}} (r_{2}/1 \ \text{\AA})^{3} (r_{2}/1 \ \text{\AA})^{3}} (r_{2}/1 \ \text{\AA$$

Full NMR hamiltonians in the context of QM

quadrupolar interaction $\hat{H}_Q = \frac{eQ}{2I(2I-1)\hbar} \hat{\mathbf{I}}\mathbf{V}\hat{\mathbf{I}}.$

quadrupolar coupling
$$\hat{H}_Q = \frac{eQ}{2I(2I-1)\hbar} V_{zz}^{LF} \frac{1}{2} (3\hat{I}_z \hat{I}_z - \hat{\mathbf{I}} \cdot \hat{\mathbf{I}})$$

Action of hamiltonians: "pushing" the density operator !

density operator at equilibrium
 (high T approximation)

Liouville – von Neumann equation

$$\hat{\rho}_{eq} \sim \left(\hat{1} + \frac{\hbar\gamma B_0}{kT} \hat{I}_z\right)$$

$$\frac{d}{dt} \hat{\rho} = \left(-i[\hat{H}, \hat{\rho}]\right)$$
commutator
$$\hat{\rho}(t) = e^{-i\hat{H}t}\hat{\rho}(0) e^{i\hat{H}t}$$
unitary operator

Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later* Cleve Moler[†] SIAM REVIEW Vol. 45, No. 1, pp. 3-000 (C) 2003

$$e^{tA} = I + tA + \frac{t^2 A^2}{2!} + \cdots$$
$$e^{tB} e^{tC} = e^{t(B+C)} \Leftrightarrow BC = CB.$$
$$e^{B+C} = \lim_{m \to \infty} (e^{B/m} e^{C/m})^m.$$
33

If A is diagonalizable then $A = PDP^{-1}$ and $e^{At} = I + tA + \frac{t^2 A^2}{2!} + \dots$ $= PP^{-1} + tPDP^{-1} + t^{2} \frac{PDP^{-1}PDP^{-1}}{2!} + \dots$ $= P(I + tD + \frac{t^{2}D^{2}}{2!} + \dots)P^{-1} = Pe^{Dt}P^{-1}$ $(e^{\sigma_{1}t} = 0, \dots, \dots, n)$ $= P \begin{pmatrix} e^{\sigma_1 \mathbf{t}} & 0 \dots & \dots & \dots \\ 0 & e^{\sigma_2 \mathbf{t}} & \dots & \dots \\ \vdots & \vdots & \vdots & \vdots \\ & & & & e^{\sigma_n \mathbf{t}} \end{pmatrix} P^{-1}.$

http://www.math.vt.edu/people/renardym/class_home/nova/bifs/node6.html

ex. I $\neq \frac{1}{2} \rightarrow$ rules $(2I+1) \times (2I+1)$

$$(\mathbf{I}_{z})_{m',m} = \langle m' | \hat{I}_{z} | m \rangle = \langle m' | m | m \rangle = m \delta_{m',m}$$

$$(\mathbf{I}_{x} \pm i\mathbf{I}_{y})_{m',m} = \langle m' | \hat{I}^{\pm} | m \rangle = \sqrt{I(I+1) - m(m \pm 1)} \delta_{m',m \pm 1}$$

$$\Rightarrow (\mathbf{I}_{x})_{m',m} = (\pm i\mathbf{I}_{y})_{m',m} = \frac{1}{2} \sqrt{I(I+1) - m(m \pm 1)} \delta_{m',m \pm 1}$$

$$35$$

ex. I = $\frac{1}{2}$ (Pauli spin matrices)

start
$$\rightarrow \mathbf{\hat{H}} = \omega_0 \mathbf{\hat{I}}_z \quad (\omega_0 = -\gamma \mathbf{B}_0)$$

$$\mathbf{\hat{\rho}}(0) = \mathbf{\hat{I}}_x = \frac{1}{2} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \xrightarrow{\mathbf{H}} = \begin{bmatrix} \frac{1}{2}\omega_0 & 0 \\ 0 & -\frac{1}{2}\omega_0 \end{bmatrix} \mathbf{\hat{H}}$$

$$\hat{\boldsymbol{\rho}}(t) = \frac{1}{2} \begin{bmatrix} 0 & 1 \cdot e^{-i\omega_0 t} \\ 1 \cdot e^{i\omega_0 t} & 0 \end{bmatrix} = \mathbf{I}_x \cos \omega_0 t + \mathbf{I}_y \sin \omega_0 t$$

 $\hat{\rho}(t) = \hat{I}_x \cos \omega_0 t + \hat{I}_y \sin \omega_0 t \quad \rightarrow \quad f(t) = \cos \omega_0 t + i \sin \omega_0 t = \exp(i\omega_0 t).$ $f(t) \sim \operatorname{tr} \{ \rho(t) \mathbf{\hat{I}}^+ \}.$
I > ½

$$\begin{aligned} \mathbf{ex. I} = \mathbf{1} \begin{pmatrix} 2\mathsf{H}, \mathbf{1}^{4}\mathsf{N} \end{pmatrix} \quad \mathbf{A}_{\mathbf{I}_{z}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} \quad \mathbf{A}_{\mathbf{I}_{x}} = \sqrt{2} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \quad \mathbf{A}_{\mathbf{I}_{y}} = \sqrt{2} \begin{bmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{bmatrix} \\ \mathbf{A}_{\mathbf{H}_{0}} = \frac{\omega_{0}}{3} \begin{pmatrix} 3\mathbf{A}_{\mathbf{I}_{1},\mathbf{I}_{x}} - I(I+1)\mathbf{\hat{1}} \end{pmatrix} = \frac{\omega_{0}}{3} \begin{pmatrix} 3\left[\begin{array}{c} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} - 2\left[\begin{array}{c} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ \mathbf{a}_{0} = \mathbf{\hat{1}}_{x} = \sqrt{2} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \quad \mathbf{\hat{1}}_{\mathbf{h}_{0}} \\ \mathbf{a}_{0} = \frac{\omega_{0}}{3} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ \mathbf{a}_{0} = \frac{\omega_{0}}{3} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ \mathbf{a}_{0} = \frac{\omega_{0}}{3} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ \mathbf{a}_{0} = \mathbf{\hat{1}}_{x} = \sqrt{2} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \quad \mathbf{\hat{1}}_{\mathbf{h}_{0}} \\ \mathbf{a}_{0} = \mathbf{\hat{1}}_{x} = \sqrt{2} \begin{bmatrix} 0 & \exp(-i\omega_{0}t) & 0 \\ 0 & \exp(-i\omega_{0}t) & 0 \\ 0 & \exp(-i\omega_{0}t) \end{bmatrix} \\ \mathbf{a}_{0} = \frac{\omega_{0}}{4h} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ \mathbf{a}_{0} = \mathbf{\hat{1}}_{x} \cos \omega_{0} t - \mathbf{i} \quad \mathbf{\hat{1}}_{0} \\ \mathbf{a}_{0} = \mathbf{\hat{1}}_{x} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 \end{bmatrix} \end{bmatrix} \\ \mathbf{a}_{0} = \mathbf{\hat{1}}_{x} \cos \omega_{0} t - \mathbf{i} \quad \mathbf{\hat{1}}_{0} \\ \mathbf{a}_{0} = \mathbf{\hat{1}}_{x} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \end{bmatrix} \\ \mathbf{a}_{0} = \mathbf{\hat{1}}_{x} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} = \mathbf{\hat{1}}_{x} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \end{bmatrix}$$

PRODUCT OPERATOR FORMALISM FOR THE DESCRIPTION OF NMR PULSE EXPERIMENTS

O. W. SØRENSEN, G. W. EICH, M. H. LEVITT, G. BODENHAUSEN and R. R. ERNST Laboratorium für Physikalische Chemie, Eidgenössische Technische Hochschule, 8092 Zürich, Switzerland

1. INTRODUCTION

In recent years, an astonishing variety of pulse techniques has been developed with the aim of enhancing the information content or the sensitivity of NMR spectra in both solution and solid phases.⁽¹⁻³⁹⁾ For the design and analysis of new techniques two approaches have been pursued in the field of "spin engineering". Many of the original concepts were based on simplified *classical or semiclassical vector models* which have inherently severe limitations for describing more sophisticated techniques; for example, those involving multiple quantum coherence. On the other hand, for a full analysis of arbitrarily complex pulse experiments applied to large spin systems, the heavy machinery of *density operator theory* has been put into action, often at the expense of physical intuition.

We present here an approach which follows a middle course. It is founded on density operator theory but retains the intuitive concepts of the classical or semiclassical vector models. The formalism systematically uses product operators to represent the state of the spin system.

Finally, we treat in Sections 12–15 some examples involving coherence transfer such as two-dimensional correlation spectroscopy, relayed magnetization transfer, multiple quantum filters, 2D exchange spectroscopy, and systems with non-uniform spin temperature in the context of flip angle effects.

Progress in NMR Spectroscopy, Vol. 16, pp. 163-192, 1983. Printed in Great Britain. All rights reserved.

complete QM approach

- clear physical meaning of operators
- geometrical rotations

can be implemented in

weak coupling – very short RF pulses – clear distinction between RF and free precession – no relaxation – $I = \frac{1}{2}$ (or not ...)

ex. one-spin system

chemical shift

$$\hat{I}_{x} \stackrel{\omega_{I}t \hat{I}_{z}}{\rightarrow} \hat{I}_{x} \cos(\omega_{I}t) + \hat{I}_{y} \sin(\omega_{I}t)$$

 $\hat{I}_{y} \stackrel{\omega_{I}t \hat{I}_{z}}{\rightarrow} \hat{I}_{y} \cos(\omega_{I}t) - \hat{I}_{x} \sin(\omega_{I}t)$

ex. two-spins system or more ...

\hat{I}_{z} - longitudinal magnetization of I					
\hat{I}_{x} - in-phase x-magnetization of I					
$\hat{I_y}$ - in-phase y-magnetization of I					
\hat{S}_{z} - longitudinal magnetization of S					
\hat{S}_{x} - in-phase x-magnetization of S					
$\hat{S_y}$ - in-phase y-magnetization of S					
$2\hat{I}_x\hat{\underline{S}}_x$ - x-magnetization of I antiphase with respect to S					
$2\hat{I}_y\hat{S}_z$ - y-magnetization of I antiphase with respect to S					
$2 \hat{I}_z \hat{S}_x$ - x-magnetization of S antiphase with respect to I					
$2\hat{I}_{z}\hat{S}_{y}$ - y-magnetization of S antiphase with respect to I					
$2\hat{I}_x\hat{S}_x$ - two spin coherence					
$2\hat{I}_x\hat{S}_y$ - two spin coherence					
$2\hat{I}_{y}\hat{S}_{x}$ - two spin coherence					
$2\hat{I}_{y}\hat{S}_{y}$ - two spin coherence					
$2\hat{I}_{z}\hat{S}_{z}$ - longitudinal two-spin order					
$4\hat{I}_{x}\hat{J}_{z}\hat{S}_{z}$ - x-magnetization of spin I in antiphase with					
respect to spins J and S					
$4\hat{I}_x\hat{J}_x\hat{S}_z$ - two-spin coherence of spins I and J in antiphase					
with respect to spin S					
$4\hat{I}_x\hat{J}_x\hat{S}_x$ - three-spin coherence					
$4\hat{I}_{z}\hat{J}_{z}\hat{S}_{z}$ - longitudinal three-spin order					
$\hat{E}/2$ - unity operator					

indirect J coupling

$$\hat{I}_{x} \xrightarrow{(\pi J t)} \hat{I}_{z} \hat{S}_{z} \\\hat{I}_{x} \cos(\pi J t) + \hat{I}_{y} \hat{S}_{z} \sin(\pi J t)$$

Product operators (PO) formalism

geometrical description

generation of anti-phase terms

$$\hat{I}_{1x} \xrightarrow{2\pi J_{12}\tau \hat{I}_{1z}\hat{I}_{2z}} \cos(\pi J_{12}\tau) \hat{I}_{1x} + \sin(\pi J_{12}\tau) 2\hat{I}_{1y}\hat{I}_{2z}$$
$$\tau = 1/(2J_{12})$$

55th Experimental Nuclear Magnetic Resonance Conference Boston, 2014

credits to

The Basic Building Blocks of NMR Pulse Sequences James Keeler

500002 1/0000

back in phase

$$2\hat{I}_{1y}\hat{I}_{2z} \xrightarrow{2\pi J_{12}\tau\hat{I}_{1z}\hat{I}_{2z}} \cos(\pi J_{12}\tau) 2\hat{I}_{1y}\hat{I}_{2z} - \sin(\pi J_{12}\tau)\hat{I}_{1x}$$

coherence transfer

$$\underbrace{2\hat{l}_{1y}\hat{l}_{2z}}_{\text{on spin 1}} \xrightarrow{(\pi/2)\hat{l}_{1x}} 2\hat{l}_{1z}\hat{l}_{2z} \xrightarrow{(\pi/2)\hat{l}_{2x}} \underbrace{-2\hat{l}_{1z}\hat{l}_{2y}}_{\text{on spin 2}}$$

heteronuclear spin system

Fundamental blocks in NMR

heteronuclear coherence transfer using INEPT

$$\hat{I}_x \xrightarrow{\text{INEPT}} \sin(2\pi J_{IS}\tau_2)\sin(2\pi J_{IS}\tau_1)\hat{S}_x$$

maximum transfer when $\tau_1 = 1/(4J_{IS})$ and $\tau_2 = 1/(4J_{IS})$

coherence transfer using HMQC

$$\hat{I}_x \xrightarrow{\text{HMQC transfer}} \text{mod. from } S\text{-spin} \times \sin^2(\pi J_{IS}\tau)\hat{I}_x$$

optimum delay τ is $1/(2J_{IS})$

generation of multiple quantum (MQ) coherences

$$\underbrace{2\hat{I}_{1x}\hat{I}_{2z}}_{\text{anti-phase on spin 1}} \xrightarrow{(\pi/2)(\hat{I}_{1x}+\hat{I}_{2x})} \underbrace{-2\hat{I}_{1x}\hat{I}_{2y}}_{\text{MQC}}$$

INEPT

¹⁰⁹Ag : [Ag(dppe)₂]NO₃, dppe=bisdiphenylphosphinoethane

The physical content of the density operator

	product operator	double-quantum part	zero-quantum part			
	$2\hat{I}_{1x}\hat{I}_{2x}$	$\tfrac{1}{2}(\hat{I}_{1+}\hat{I}_{2+}+\hat{I}_{1-}\hat{I}_{2-})$	$\tfrac{1}{2}(\hat{I}_{1+}\hat{I}_{2-}+\hat{I}_{1-}\hat{I}_{2+})$	operator	definition	
	$2\hat{I}_{1x}\hat{I}_{2y}$	$\frac{1}{2\mathrm{i}}(\hat{I}_{1+}\hat{I}_{2+}-\hat{I}_{1-}\hat{I}_{2-})$	$\frac{1}{2i}(-\hat{I}_{1+}\hat{I}_{2-}+\hat{I}_{1-}\hat{I}_{2+})$	\hat{DQ}_x	$(2\hat{I}_{1x}\hat{I}_{2x} - 2\hat{I}_{1y}\hat{I}_{2y})$	
	$2\hat{I}_{1y}\hat{I}_{2x}$	$\frac{1}{2\mathrm{i}}(\hat{I}_{1+}\hat{I}_{2+}-\hat{I}_{1-}\hat{I}_{2-})$	$\tfrac{1}{2i}(\hat{I}_{1+}\hat{I}_{2-}-\hat{I}_{1-}\hat{I}_{2+})$	$\hat{DQ_y}$	$(2\hat{I}_{1x}\hat{I}_{2y}+2\hat{I}_{1y}\hat{I}_{2x})$	
_	$2\hat{I}_{1y}\hat{I}_{2y}$	$-\tfrac{1}{2}(\hat{I}_{1+}\hat{I}_{2+}+\hat{I}_{1-}\hat{I}_{2-})$	$\tfrac{1}{2}(\hat{I}_{1+}\hat{I}_{2-}+\hat{I}_{1-}\hat{I}_{2+})$	\hat{ZQ}_x	$(2\hat{I}_{1x}\hat{I}_{2x} + 2\hat{I}_{1y}\hat{I}_{2y})$	
				\hat{ZQ}_{v}	$(2\hat{I}_{1y}\hat{I}_{2x} - 2\hat{I}_{1x}\hat{I}_{2y})$	

Phase cycling

AMES KEELER

credits to

WILEY

Phase cycling

phase of the pulses (
$$\Phi_A$$
, Φ_B ...)

phase of the receiver (Φ_{rec})

$$\Delta \boldsymbol{p}_{A} \boldsymbol{\Phi}_{A} + \Delta \boldsymbol{p}_{B} \boldsymbol{\Phi}_{B} + \dots + \boldsymbol{\Phi}_{rec} = \boldsymbol{0}$$

 $\Phi_{A} = \begin{bmatrix} 0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ} \end{bmatrix}$ $\Phi_{rec} \Delta p = \pm 2; \quad [0^{\circ}, 180^{\circ}, 0^{\circ}, 180^{\circ}]$

J. Magn. Reson., 2011.

Historical Perspective

Reflections of pathways: A short perspective on 'Selection of coherence transfer pathways in NMR pulse experiments'

Geoffrey Bodenhausen*

B.

z

active volume 1

Outline

- Nuclear spin the NMR experiment
- Mathematical treatment of NMR
- Multidimensional NMR
- Relaxation
- Solid State NMR
- Gradients and imaging

J. Jeener and R. Ernst : 2 dimensional (2D) Fourier Transform NMR

The Nobel Prize in Chemistry 1991 was awarded to Richard R. Ernst "for his contributions to the development of the methodology of high resolution nuclear magnetic resonance (NMR) spectroscopy".

Richard R. Ernst

Discrete Fourier transform

Uniform sampling

2D NMR

credits to: P. Grandinetti, NMR course, sept. 5, 2013

COSY DQF (double quantum filtered)

COSY

Essential 2D experiments

DQ spectroscopy

HSQC

INADEQUATE

HMBC

Essential 2D experiments

TOCSY

HETCOR

TOCSY

NMR of proteins

The Nobel Prize in Chemistry 2002

John B. Fenn, Koichi Tanaka, Kurt Wüthrich

The Nobel Prize in Chemistry 2002	W
Nobel Prize Award Ceremony	w
John B. Fenn	Ŧ
Koichi Tanaka	w
Kurt Wüthrich	w

John B. Fenn

Koichi Tanaka

Kurt Wüthrich

The Nobel Prize in Chemistry 2002 was awarded "for the development of methods for identification and structure analyses of biological macromolecules with one half jointly to John B. Fenn and Koichi Tanaka "for their development of soft desorption ionisation methods for mass spectrometric analyses of biological macromolecules" and the other half to Kurt Wüthrich "for his development of nuclear magnetic resonance spectroscopy for determining the three-dimensional structure of biological macromolecules in solution".

www.mhhe.com/physsci/chemistry/carey/student/

NMR of proteins

isotope labeling

restraints

modeling

■ structure ...

HN(CO)CA

References:

A. Bax and M. Ikura (1991) *J. Biomol. NMR* **1** 99-104. (Link to Article) S. Grzesiek and A. Bax (1992) *J. Magn. Reson.* **96** 432-440. (Link to Article)

Minimum labelling: ¹⁵N, ¹³C

Dimensions: 3

Methods Mol Biol. 2012;831:133-40. doi: 10.1007/978-1-61779-480-3_8.

- NMR studies of large protein systems.
- Tzeng SR¹, Pai MT, Kalodimos CG.

Author information

Abstract

Over the recent years, there has been increased interest in applying NMR spectroscopy for the characterization of proteins and protein complexes of large molecular weight. The combination of multidimensional NMR, novel pulse sequences allowing for the selection of slowly relaxing coherence pathways, and the development of a range of labeling techniques has enabled high-resolution NMR analyses of supramolecular systems of even megadalton size. Here, we describe how NMR can be used to obtain structural information in large systems by using as an example the recent structure determination of SecA ATPase (204 kDa) in complex with a signal peptide.

Applications: relaxation and dynamics of proteins

Carine Van Heijenoort, ICSN, Gif/Yvette, France

Insight into the Role of Dynamics in the Conformational Switch of the Small GTP-binding Protein Arf1*^S

Received for publication, April 15, 2010, and in revised form, September 14, 2010 Published, JBC Papers in Press, September 21, 2010, DCI 10.1074/jbc:M110.134445 Vanessa Buosi[‡], Jean-Pierre Placial[‡], Jean-Louis Leroy[‡], Jacqueline Cherfils⁵¹, Éric Guittet^{‡2}, and Carine van Heijenoort^{‡3}

> THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 285, NO. 49, pp. 37987–37994, December 3, 2010 © 2010 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in the U.S.A.

Outline

- Nuclear spin the NMR experiment
- Mathematical treatment of NMR
- Multidimensional NMR
- Relaxation
- Solid State NMR
- Gradients and imaging

in the rotating frame T

$$\begin{aligned} \frac{d^* \mathbf{M}(t)}{dt} &= \omega_{\text{eff}}(t) \times \mathbf{M}(t) - [\mathbf{R}] \{ \mathbf{M}(t) - \mathbf{M}_{\text{eq}} \}, \\ \omega_{\text{eff}}(t) &= \omega(t) - \omega_{\text{rot}}. \end{aligned}$$

$$\begin{pmatrix} M_x^*(t) \\ M_y^*(t) \\ M_z^*(t) \end{pmatrix} = \begin{pmatrix} [M_x^*(0)\cos\Omega t - M_y^*(0)\sin\Omega t] e^{-t/T_2} \\ [M_y^*(0)\cos\Omega t + M_x^*(0)\sin\Omega t] e^{-t/T_2} \\ M_z^*(0)e^{-t/T_1} + M_{eq}(1 - e^{-t/T_1}) \end{pmatrix}$$

limitations of the Bloch equations

credits to: P. Grandinetti, NMR course, sept. 5, 2013

saturation recovery experiment (T₁)

$$M_z(t_1) = M_{eq}(1 - e^{-t_1/T_1}).$$

Carr–Purcell Meiboom–Gill (T₂)

In principle one can obtain T_2 by taking half the inverse of the full width at half height of a resonance in an NMR spectrum. Unfortunately, the line widths of resonances in NMR are often dominated by the inhomogeneities in the magnetic field rather than T_2 .

Introduction to relaxation theory

ex.: dipole-dipole relaxation

$$T_2^{-1} = \frac{3}{20} b^2 \{ 3\mathcal{J}(0) + 5\mathcal{J}(\omega^0) + 2\mathcal{J}(2\omega^0) \}$$
$$T_1^{-1} = \frac{3}{10} b^2 \{ \mathcal{J}(\omega^0) + 4\mathcal{J}(2\omega^0) \}$$

The Nobel Prize in Physics 1952 Felix Bloch, E. M. Purcell

The Nobel Prize in Physics 1952	w
Felix Bloch	w
E. M. Purcell	w

Felix Bloch

Edward Mills Purcell

The Nobel Prize in Physics 1952 was awarded jointly to Felix Bloch and Edward Mills Purcell "for their development of new methods for nuclear magnetic precision measurements and discoveries in connection therewith"

The Nobel Prize in Physics 1981

Nicolaas Bloembergen Prize share: 1/4 Kai M. Siegbahn Prize share: 1/2

The Nobel Prize in Physics 1981 was divided, one half jointly to Nicolaas Bloembergen and Arthur Leonard Schawlow "for their contribution to the development of laser spectroscopy" and the other half to Kai M. Siegbahn "for his contribution to the development of high-resolution electron spectroscopy".

Arthur Leonard

Prize share: 1/4

Schawlow

NOESY... finally

Solomon equations

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} \langle \hat{I}_{1z} \rangle \\ \langle \hat{I}_{2z} \rangle \end{pmatrix} = \begin{pmatrix} -R_{\mathrm{auto}} & R_{\mathrm{cross}} \\ R_{\mathrm{cross}} & -R_{\mathrm{auto}} \end{pmatrix} \begin{pmatrix} \langle \hat{I}_{1z} \rangle \\ \langle \hat{I}_{2z} \rangle \end{pmatrix}$$

Progress in Nuclear Magnetic Resonance Spectroscopy

Volume 78, April 2014, Pages 1-46

The nuclear Overhauser effect from a quantitative perspective

Abstract

The nuclear Overhauser enhancement or effect (NOE) is the most important measure in liquid-state NMR with macromolecules. Thus, the NOE is the subject of numerous reviews and books. Here, the NOE is revisited in light of our recently introduced measurements of exact nuclear Overhauser enhancements (eNOEs), which enabled the determination of multiple-state 3D protein structures. This review encompasses all relevant facets from the theoretical considerations to the use of eNOEs in multiple-state structure calculation. Important aspects include a detailed presentation of the relaxation theory relevant for the nuclear Overhauser effect, the estimation of the correction for spin diffusion, the experimental determination of the eNOEs, the conversion of eNOE rates into distances and validation of their quality, the distance-restraint classification and the protocols for calculation of structures and ensembles.

74

Other relaxation mecanisms

Applications: electronic paramagnetic relaxation for biological macromolecules dynamics

Acc. Chem. Res., 2014, 47 (10), pp 3118-3126

△ restraints for protein structure determination

- △ probe/nucleus distance
- △ dynamics

. . .

△ EPR & NMR

paramagnetic ion in a molecule 🛆

- paramagnetic tag 🗅
- pseudocontact shift 🛆
- residual dipolar couplings
 - paramagnetic relaxation \triangle
 - ... 🗅

Applications: electronic paramagnetic relaxation for biological macromolecules dynamics

Outline

- Nuclear spin the NMR experiment
- Mathematical treatment of NMR
- Multidimensional NMR
- Relaxation
- Solid State NMR
- Gradients and imaging

Internal interactions

Principal values – ellipsoid representation

Powders available

Resolution in solid state NMR

Magic Angle Spinning (MAS): a kind ... of miracle (Andrew et al., Nature, 1959)

83

MAS at finite frequency

Quadrupolar interaction ($I > \frac{1}{2}$): first order perturbation theory

Quadrupolar interaction (I > $\frac{1}{2}$): second order perturbation theory

Quadrupolar interaction (second order): MAS

Quadrupolar nuclei and macroscopic reorientations

Rotation around a unique axis: MQ-MAS

Applications of MQ-MAS

Massiot, Ecole RMN des Houches, 1997.

Applications: NMR and materials

- △ crystals (organic, inorganic) & glasses
- △ polymers & soft materials
- △ organic-inorganic hybrids
- △ cements & pastes
- \triangle ceramics

. . .

- △ biomaterials
- △ catalysts & zeolites

www.acmecompany.com/Pages/glass.html

www.personal.utulsa.edu/~geoffrey-price/zeolite/

- (almost) all nuclei in the periodic table \triangle
 - ultra high field and ultra fast MAS 🛆
- decoupling / recoupling under fast MAS 🛆
 - specific pulse schemes for Q nuclei 🛆
 - DAS, DOR, MQMAS
 - very low / high T 🗅

Applications: NMR and materials

Visibility of Al Surface Sites of γ -Alumina: A Combined Computational and Experimental Point of View

J. Phys. Chem. C, 2014, 118 (28), pp 15292-15299

Pierre Florian, CEMHTI, Orléans, France

The role of Al³⁺ on rheology and structural changes in sodium silicate and aluminosilicate glasses and melts

Geochim. Cosmochim. Acta, 126 (2014) 495-517

Cross Polarization (CP) – Hartmann-Hahn condition

The combination of two averaging processes

first idea: highest B₀ and highest v_{rot} !

Decoupling / recoupling in solid state NMR

Applications: solid state NMR and biomolecules

△ proteins

. . .

- \triangle role of water molecules
- △ polymorphism
- △ molecules of pharmaceutical interest

http://www.chem.iastate.edu/faculty/Mei_Hong/research

¹H, ¹³C, ¹⁵N (¹⁷O, ³¹P) △

- ²⊢ △
- ultra high B₀ field, ultra fast MAS \triangle
- high res. ¹H solid state NMR: methodology
 - low power decoupling \triangle
 - sample preparation \triangle
 - hyperpolarization (DNP...)

Applications: solid state NMR and biomolecules

Outline

- Nuclear spin the NMR experiment
- Mathematical treatment of NMR
- Multidimensional NMR
- Relaxation
- Solid State NMR
- Gradients and imaging

The Nobel Prize in Physiology or Medicine 2003 Paul C. Lauterbur, Sir Peter Mansfield

The Nobel Prize in Physiology or Medicine 2003

Nobel Prize Award Ceremony

Paul C. Lauterbur

Sir Peter Mansfield

Paul C. Lauterbur

Sir Peter Mansfield

The Nobel Prize in Physiology or Medicine 2003 was awarded jointly to Paul C. Lauterbur and Sir Peter Mansfield "for their discoveries concerning magnetic resonance imaging"

Introduction to gradients

dedicated to:

- compensation of field inhomogeneities (shims)
- coherence selection
- space encoding for image acquisition

getting a G_x gradient

103

Gradient echoes

NMR imaging

$$B = (B^{0} + G_{x}x) e_{z}$$
$$\omega^{0}(x) = -\gamma(B^{0} + G_{x}x) = \omega^{0}(0) - \gamma G_{x}x$$
$$\Omega^{0}(x) = \omega^{0}(x) - \omega_{ref} = -\gamma G_{x}x$$

$$k\text{-Space Formalism}$$
$$s(\vec{k}) = \int d^3r \ \rho(\vec{r}) \cdot e^{2\pi i \ \vec{k}(t) \cdot \vec{r}},$$
$$\rho(\vec{r}) = \int d^3k \ s(\vec{k}) \cdot e^{-2\pi i \ \vec{k}(t) \cdot \vec{r}}.$$

K-space charting strategies

www.ebyte.it/library/educards/mri/K-SpaceMRI 105

Applications: imaging and MRI

- △ field gradients
- △ Magnetic Resonance Imaging (MRI)
- △ functional imaging

www.stlukeshouston.com/OurServices/

	high resolution NMR	solid state NMR	clinical imaging
B₁ (Tesla)	<mark>5 10−</mark> 4	<mark>2 10^{−3}</mark>	10 ⁻⁵

Henk Van As^{1,2}* and Carel W. Windt¹ ¹Laboratory of Biophysics and ²Wageningen NMR Centre, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands

spatial encoding
image contrast
T₁, T₂-weighted images
contrast agents
pixels, matrices, slices
SNR

• 🛆

106

Applications: imaging and MRI

Elodie Parzy, RMSB, Bordeaux, France

In vivo Overhauser-enhanced MRI of proteolytic activity

Neha Koonjoo^a, Elodie Parzy^a, Philippe Massot^a, Matthieu Lepetit-Coiffé^{a,b}, Sylvain R. A. Marque^c, Jean-Michel Franconi^a, Eric Thiaudiere^a and Philippe Mellet^{a,d}*

Contrast Media Mol. Imaging 2014, 9 363-371

back to SENSITIVITY ! ...
Applications: hyperpolarization

- △ NMR sensitivity: THE challenge !
- △ from thermal equibrium to ...
- △ non equilibrium polarization

https://pines.berkeley.edu/research/hyperpolarization

noble gas atoms: ¹²⁹Xe, ¹³¹Xe, ⁸³Kr… △ ³He △

- Dynamic Nuclear Polarization (DNP)
 - photochemical DNP
 - parahydrogen 🛆
 - optical excitation of NV⁻center △
 - hyperpolarized singlet MRI 🗅

http://www.chem.tamu.edu/rgroup/hilty

us-born micros

Applications: hyperpolarization

Is solid-state NMR enhanced by dynamic nuclear polarization? Daniel Lee ^{a,b,*}, Sabine Hediger ^{a,b,c}, Gaël De Paëpe ^{a,b} Solid State NMR, 66-67 (2015) 6-20

CEA, Grenoble, France, Sabine Hediger

Patrick Berthault, CEA Saclay, France

3D-printed system optimizing dissolution of hyperpolarized gaseous species for micro-sized NMR⁺

A. Causier,^{ab} G. Carret,^b C. Boutin,^b T. Berthelot^a and P. Berthault^{*b} Lab Chip, 2015, 15, 2049

