A New Approach of Ordered Exponential in NMR: the Path-Sum

C. Bonhomme ${ }^{1}$, P.-L. Giscard ${ }^{2}$
${ }^{1}$ Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, Paris, France
${ }^{2}$ Laboratoire Joseph Liouville, Université du Littoral Côte d'Opale, Calais, France
christian.bonhomme@upmc.fr

60th Experimental Nuclear Magnetic Resonance Conference April 7-12, 2019

General context - The evolution operator $\mathbf{U}(\mathrm{t})$

Dyson time-ordering operator

$$
\begin{gathered}
\mathbf{U}\left(\mathbf{t}^{\prime}, \mathbf{t}\right)=\mathbf{O E}\left[-\mathbf{i} \mathbf{H}\left(\mathbf{t}^{\prime}, \mathbf{t}\right)\right]=\boldsymbol{T} \boldsymbol{\operatorname { e x p }}\left(-\mathbf{i} \int_{\boldsymbol{t}}^{\boldsymbol{t}^{\prime}} \mathbf{H}(\boldsymbol{\tau}) \mathbf{d} \boldsymbol{\tau}\right) \\
\mathbf{U}\left(\boldsymbol{\tau}_{\boldsymbol{c}}\right)=\boldsymbol{\operatorname { e x p }}\left(-\boldsymbol{i} \boldsymbol{\tau}_{\boldsymbol{C}} \sum_{n=\mathbf{0}}^{\infty} \frac{\boldsymbol{H}^{(n)}}{}\right) \quad \overline{\hat{H}}={ }^{(0)} \hat{H}-\frac{1}{2} \sum_{n \neq 0} \frac{[(-n) \hat{H},(n) \hat{H}]}{n \omega_{m}}+\frac{1}{2} \sum_{n \neq 0} \frac{\left[{ }^{(n)} \hat{H},(0) \hat{H}\right],((-n) \hat{H}]}{\left(n \omega_{m}\right)^{2}} \\
\text { Magnus } \quad \\
\text { Floquet } \quad+\frac{1}{3} \sum_{k, n \neq 0} \frac{[(n) \hat{H},[\hat{H},(-n-k) \hat{H}]]}{k n \omega_{m}^{2}}+\cdots
\end{gathered}
$$

G. Floquet, Ann. Sci. Ecole Norm. Sup., 1883
F.J. Dyson, Phys. Rev., 1949
W. Magnus, Pure Appl. Math., 1954
F. Fer, Bull. Classe Sci. Acad. Roy. Bel., 1958
J.H. Shirley, Phys. Rev., 1965
U. Haeberlen, J.S. Waugh, Phys. Rev., 1968
M.M. Maricq, Phys. Rev., 1982
S. Vega, E.T. Olejniczak, R.G. Griffin, J. Chem. Phys., 1984
I. Scholz, B.H. Meier, M. Ernst, J. Chem. Phys., 2007
M. Leskes, P.K. Madhu, S. Vega, Progress in NMR Spect., 2010
M. Goldman, P. J. Grandinetti, A. Llor et al., J. Chem. Phys. 1992
E.S. Mananga, Solid State NMR, 2013
K. Takegoshi, N. Miyazawa, K. Sharma, P. K. Madhu, J. Chem. Phys., 2015

Outline

■ Basic results of algebraic graph theory

■ Path-Sum applied to Ordered Exponential (OE)

$$
\mathrm{OE}[\mathrm{~A}]\left(t^{\prime}, t\right)=\left(\begin{array}{cc}
\int_{t}^{t^{\prime}} & G_{K_{2}, 11}\left(t^{\prime}, \tau\right) d \tau \\
& O E_{12}\left(t^{\prime}, t\right) \\
O E_{21}\left(t^{\prime}, t\right) & \int_{t}^{t^{\prime}} G_{K_{2}, 22}\left(t^{\prime}, \tau\right) d \tau
\end{array}\right)
$$

- Applications:
- Circularly polarized excitation
- Linearly polarized excitation, Bloch-Siegert (BS) effect
-N spins: homonuclear dipolar Hamiltonian, $\boldsymbol{H}_{\boldsymbol{D}}$

Basic results of algebraic graph theory

$\mathcal{G}=($ Vertex set, \mathcal{E} dge set $)$

ex.: walk $\boldsymbol{W}_{1 \leftarrow 2}\left(\right.$ from V_{2} to $\left.V_{1}\right)$ of length 4

$$
\mathbf{A}_{\underline{q}}=\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
0 & a_{32} & 0
\end{array}\right)
$$

entry: weight on a directed edge

Basic results of algebraic graph theory

the powers of the Adjacency matrix $\mathbf{A}_{\underline{q}}$ on a graph $\mathscr{G}_{\boldsymbol{g}}$ generate ALL weighted WALKS \mathbb{W} on \mathscr{G}

$\mathbf{A}_{\underline{q}}^{\mathbf{2}}=\left(\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & a_{32} & 0\end{array}\right)^{\mathbf{2}}=\left(\begin{array}{ccc} \\ \vdots & \ddots & \vdots \\ \cdots\end{array} a_{12}+a_{12} \times a_{22}+a_{13} \times a_{32}\right.$

N. Biggs, in: Algebraic Graph Theory (1993)

Basic results of algebraic graph theory

the powers of the Adjacency matrix $\mathbf{A}_{\boldsymbol{q}}$ on a graph $\boldsymbol{G}_{\boldsymbol{g}}$ generate

 ALL weighted WALKS \mathbb{W} on \mathscr{G}
N. Biggs, in: Algebraic Graph Theory (1993)

Path-Sum

\diamond simple path \boldsymbol{P} (self avoiding walk): \boldsymbol{W} whose \mathcal{V} are all distinct
\diamond simple cycle \mathcal{C} (self avoiding polygon): \mathcal{W} whose endpoints are identical and intermediate
V are all distinct and different from the endpoints

«Fundamental Theorem of Arithmetic» on g (P.-L. Giscard, 2012)
$>$ wactor uniquely into prime elements, i.e. simple paths and simple cycles
$>$ if \boldsymbol{g} is finite the number of primes is finite
$>$ resummation of all winvolves a finite number of operations: sum on simple paths and continuous fraction of simple cycles with vertex removal

Power series of A_{g}
ex.: $\exp \left[\mathbf{A}_{g}\right]=\sum_{k=0}^{\infty} \frac{1}{n!} \mathbf{A}_{\S}{ }^{k}$

$$
\left(A_{g}\right)^{k}=\binom{\left(\mathrm{A}_{\sigma}\right)_{\alpha \alpha}^{k}}{\cdots}
$$

Power series of A_{g}

$\operatorname{ex}:: \exp \left[\mathbf{A}_{g}\right]=\sum_{k=0}^{\infty} \frac{1}{n!} \mathbf{A}_{\underline{g}}^{k}$

$$
\left(\mathbf{A}_{q}\right)^{k}=\left(\begin{array}{c}
\cdots \\
\vdots\left(\mathbf{A}_{c}\right)_{\omega \alpha}^{k} \\
\cdots
\end{array}\right)
$$

$\boldsymbol{F}(\mathbf{A})_{\omega \alpha}=\sum_{\boldsymbol{k}=0}^{\infty} \boldsymbol{c}_{\boldsymbol{k}} \sum_{\mathcal{w}_{\mathcal{G}, \alpha \omega ; \boldsymbol{k}}} \boldsymbol{a}_{\omega \boldsymbol{h}_{\boldsymbol{k}}} \ldots \times \boldsymbol{a}_{\boldsymbol{h}_{3} \boldsymbol{h}_{\mathbf{2}}} \times \boldsymbol{a}_{\boldsymbol{h}_{2} \alpha}$
power series of $\mathbf{A}_{\boldsymbol{q}}$
all weighted walks \boldsymbol{W} from \boldsymbol{V}_{α} to \boldsymbol{V}_{ω} of length $\boldsymbol{\ell}$
ex.: $\exp \left[\mathbf{A}_{g}\right]=\sum_{k=0}^{\infty} \frac{1}{n!} \mathbf{A}_{\boldsymbol{g}}^{k}$

$$
\left(\mathbf{A}_{q}\right)^{k}=\left(\begin{array}{c}
\cdots \\
\vdots\left(\mathbf{A}_{q}\right)_{\omega \alpha}^{k} \\
\cdots
\end{array}\right)
$$

$\boldsymbol{F}(\mathbf{A})_{\omega \alpha}=\sum_{\boldsymbol{k}=0}^{\infty} \boldsymbol{c}_{\boldsymbol{k}} \sum_{\mathcal{W}_{\underline{G}, \alpha \omega ; \boldsymbol{k}}} \boldsymbol{a}_{\omega \boldsymbol{h}_{\boldsymbol{k}}} \ldots \times \boldsymbol{a}_{\boldsymbol{h}_{\mathbf{3}} \boldsymbol{h}_{\mathbf{2}}} \times \boldsymbol{a}_{\boldsymbol{h}_{\mathbf{2}} \alpha}$ power series of $\mathbf{A}_{\boldsymbol{q}}$ all weighted walks \boldsymbol{W} from \boldsymbol{V}_{α} to \boldsymbol{V}_{ω} of length $\boldsymbol{\ell}$

Path-Sum

«Fundamental Theorem of Arithmetic» on g (P.-L. Giscard, 2012)
$>$ wactor uniquely into prime elements, i.e. simple paths and simple cycles
$>$ if \boldsymbol{g} is finite the number of primes is finite

- resummation of all winvolves a finite number of operations: sum on simple paths and continuous fraction of simple cycles with vertex removal
$\operatorname{ex} .: \exp \left[A_{g}\right]=\sum_{k=0}^{\infty} \frac{1}{n!} A_{g}^{k}$

$$
\left(\mathbf{A}_{q}\right)^{k}=\left(\begin{array}{c}
\cdots \\
\vdots\left(\mathbf{A}_{q}\right)_{\omega \alpha}^{k} \\
\cdots
\end{array}\right)
$$

$\boldsymbol{F}\left(\mathbf{A}_{\underline{g}}\right)_{\omega \alpha}=\sum_{\boldsymbol{k}=0}^{\infty} \boldsymbol{c}_{\boldsymbol{k}} \sum_{\mathcal{w}_{\underline{g}, \alpha \omega ; \boldsymbol{k}}} \boldsymbol{a}_{\omega \boldsymbol{h}_{\boldsymbol{k}}} \ldots \times \boldsymbol{a}_{\boldsymbol{h}_{\mathbf{3}} \boldsymbol{h}_{\mathbf{2}}} \times \boldsymbol{a}_{\boldsymbol{h}_{\mathbf{2}} \alpha}$ power series of $\mathbf{A}_{\boldsymbol{q}} \quad$ all weighted walks \boldsymbol{W} from \boldsymbol{V}_{α} to \boldsymbol{V}_{ω} of length $\boldsymbol{\kappa}$

Path-Sum

$$
\boldsymbol{F}(\mathbf{A} \boldsymbol{g})_{\omega \alpha}=\sum_{\mathcal{P} \boldsymbol{g}_{, \alpha \omega ; \ell}} f\left(\boldsymbol{a}_{\omega \omega}\right) \times \boldsymbol{a}_{\omega \mu_{\ell} \ldots f} \boldsymbol{f}\left(\boldsymbol{a}_{\boldsymbol{\mu}_{2} \mu_{2}}\right) \boldsymbol{a}_{\boldsymbol{\mu}_{2} \alpha} \times \boldsymbol{f}\left(\boldsymbol{a}_{\alpha \alpha}\right)
$$

sum over the finite set of simple cycles \mathcal{C} (continued fraction of finite breadth)
$\mathbf{A}_{\boldsymbol{g}}(t)=\left(\begin{array}{c}\cdots \\ \left\langle s_{\omega}\right| \mathbf{A}(t)\left|s_{\alpha}\right\rangle \\ \ldots\end{array}\right)$

$$
\mathbf{O E}\left[\mathbf{A}_{\boldsymbol{G}}\right]\left(t^{\prime}, t\right)=\left(\begin{array}{c}
\cdots \\
\left\langle s_{\circlearrowleft}\right| \mathrm{OE}\left[\mathrm{~A}_{g}\right]\left(t^{\prime}, t\right) \mid s_{0} \\
\cdots
\end{array}\right)
$$

Σ ALL weighted walks $\omega \leftarrow \alpha$ on A_{q} but using -product
$(f * g)=\int_{t}^{t^{\prime}} f\left(t^{\prime}, \tau\right) g(\tau, t) d \tau$
instead of \times

$$
\begin{gathered}
\mathbf{A}(t)=\left(\begin{array}{ll}
a_{11}(t) & a_{12}(t) \\
a_{21}(t) & a_{22}(t)
\end{array}\right) \\
\text { Path-Sum } \\
\mathbf{O E}[\mathbf{A}]\left(t^{\prime}, t\right)=\left(\begin{array}{cc}
\int_{t}^{t^{\prime}} G_{K_{2}, 11}\left(t^{\prime}, \tau\right) d \tau & O E_{12}\left(t^{\prime}, t\right) \\
O E_{21}\left(t^{\prime}, t\right) & \int_{t}^{t^{\prime}} G_{K_{2}, 22}\left(t^{\prime}, \tau\right) d \tau
\end{array}\right)
\end{gathered}
$$

- entry \rightarrow solving an equation with analytical tools
$-\underline{\text { finite }}$ number of operations \rightarrow unconditional convergence
- non perturbative formulation of OE
$>$ scalability

$$
\mathbf{A}(t)=\left(\begin{array}{ll}
a_{11}(t) & a_{12}(t) \\
a_{21}(t) & a_{22}(t)
\end{array}\right)
$$

$\mathbf{O E}[\mathbf{A}]\left(t^{\prime}, t\right)=\left(\begin{array}{cc}\int_{t}^{t^{\prime}} G_{K_{2}, 11}\left(t^{\prime}, \tau\right) d \tau & O E_{12}\left(t^{\prime}, t\right) \\ O E_{21}\left(t^{\prime}, t\right) & \int_{t}^{t^{\prime}} G_{K_{2}, 22}\left(t^{\prime}, \tau\right) d \tau\end{array}\right)$

« Fundamental Theorem of Arithmetic » on q
 (P.-L. Giscard, 2012)

$>$ wactor uniquely into prime elements, i.e. simple paths and simple cycles

- if g is finite the number of primes is finite
- resummation of all winvolves a finite number of operations: sum on simple paths and continuous fraction of simple cycles with vertex removal

An example: 2×2 matrix

$$
\begin{array}{lll}
(f * g)=\int_{t}^{t^{\prime}} f\left(t^{\prime}, \tau\right) g(\tau, t) d \tau \quad \boldsymbol{a}_{i j}(t) & \left.\boldsymbol{O E}_{21}\left(\boldsymbol{t}^{\prime}, \boldsymbol{t}\right) \quad \int_{t}^{t} \boldsymbol{G}_{K_{2}, 2 \mathbf{2}}\left(t^{\prime}, \boldsymbol{\tau}\right) \boldsymbol{d} \tau\right) \\
{\left[\mathbb{1}_{*}-(* * * \cdots)\right]^{*-1}=\sum_{n \geq 0}(* * * \cdots)^{* n}} & \begin{array}{ll}
* & \text { Neumann series (analytical) } \\
\text { linear Volterra (2nd } k i n d) \text { (numerical) }
\end{array}
\end{array}
$$

An example: $\mathbf{2 \times 2}$ matrix

 $\left[1_{*}-(* * * \cdots)\right]^{*-1}=\sum_{n \geq 0}(* * * \cdots)^{* n}$

Neumann series (analytical)
linear Volterra (2 ${ }^{\text {nd }}$ kind) (numerical)

sum on simple

 cycles$$
G_{K_{2}, 11}={ }_{j}^{1}\left[1_{*}-a_{11}-a_{12} * G_{K_{2} \backslash\{1\}, 22} * a_{21}\right]^{*-1}
$$

π_{2}

$$
G_{K_{2} \backslash\{1\}, 22}=\left[1_{*}-a_{22}\right]^{*-1}
$$

- END of the continued fraction !
- END!
- finite sum on simple \boldsymbol{P}
- finite sum on \mathcal{C}

Summary (partial)

- ... take a finite matrix $\mathbf{A}_{\mathfrak{G}}(\mathbf{t})$ associated to \mathfrak{G} (Hermitian or not, periodic or not...)
- each entry of $\mathbf{A}_{g}{ }^{k}$ is given is given by a finite number of operations by using Path-Sum (with \times product)
- each entry of $\left.\operatorname{OE}\left[\mathrm{A}_{q}\right]\left(t^{\prime}, t\right)\right]$ is given is given by a finite number of operations by using Path-Sum (with $*$ - product and $\left[1_{*}-(* * * \cdots)\right]^{*-1}$)

Summary (partial)

- ... take a finite matrix $\mathbf{A}_{\underline{g}}(t)$ associated to \mathfrak{g} (Hermitian or not, periodic or not...)
- each entry of $\mathbf{A}_{g}{ }^{k}$ is given is given by a finite number of operations by using Path-Sum (with \times product)
- each entry of $\left.\operatorname{OE}\left[\mathrm{A}_{\mathfrak{q}}\right]\left(t^{\prime}, t\right)\right]$ is given is given by a finite number of operations by using Path-Sum (with $*$ - product and $\left.\left[1_{*}-(* * * \cdots)\right]^{*-1}\right)$
- the matrix nature of the problem is fully replaced when working on entries
- or, one can keep it partially $\ldots \rightarrow$ PARTITIONS (scalability)
- the convergence of the Neumann series (analytical) is superexponential
- a convenient (numerical) approach: linear Volterra equations (2 $\mathbf{2}^{\text {nd }} \boldsymbol{k i n d}$)

■ Basic results of algebraic graph theory

■ Path-Sum applied to the ordered exponential (OE)

■ Applications:

- Circularly polarized excitation
- Linearly polarized excitation, Bloch-Siegert (BS) effect
- N spins homonuclear dipolar Hamiltonian, $\boldsymbol{H}_{\boldsymbol{D}}$

Applications - Circularly polarized excitation (test model)

$$
\begin{gathered}
\mathbf{H}(t)=\left(\begin{array}{cc}
\frac{\omega_{0}}{2} & \beta e^{-i \omega t} \\
\beta e^{i \omega t} & -\frac{\omega_{0}}{2}
\end{array}\right),\left[\mathbf{H}\left(\mathrm{t}^{\prime}\right), \mathbf{H}(\mathrm{t})\right] \neq 0 \\
\begin{array}{c}
\mathbf{H}(t)=\frac{1}{2} \omega_{0} \boldsymbol{\sigma}_{\mathbf{z}}+ \\
\beta\left[\boldsymbol{\sigma}_{\mathbf{x}} \cos (\omega t)+\boldsymbol{\sigma}_{\mathbf{y}} \sin (\omega t)\right]
\end{array} \quad\left[\mathbb{1}_{*}-(* * * \cdots)\right]^{*-1} \\
G_{K_{2}, 11}(t)=\left(\begin{array}{c}
\left.1_{*}-\frac{\omega_{0}}{2 i}+\frac{i \beta^{2}}{\Delta}\left(e^{-i \Delta\left(t^{\prime}-t\right)}-1\right)\right)^{*-1} \\
\text { OE entry } \\
\text { Neumann series }
\end{array}\right. \\
O E[-i \mathbf{H}](t)_{11}=1+\sum_{n=0}^{\infty} \frac{\left(-i t \beta^{2} / \Delta \Delta^{n+1}\right.}{(n+1)!} \sum_{k=0}^{n+1}\binom{n+1}{k}\left(\frac{\Delta \omega_{0}}{2 \beta^{2}}-1\right)^{k}{ }_{2 F_{1}}\left(-k,-k+n+1 ;-n-1 ; \frac{\Delta^{2}}{\frac{\Delta \omega_{2}}{2}-\beta^{2}}\right)
\end{gathered}
$$

Gauss hypergeometric

$$
\begin{aligned}
& \text { OE[-iH](t) } \\
& \left(\begin{array}{ll}
e^{-\frac{1}{2} i t\left(\Delta+\frac{\omega_{0}}{2}\right)}\left(\cos (\alpha t / 2)+\frac{i}{\alpha}\left(\Delta-\frac{\omega_{0}}{2}\right) \sin (\alpha t / 2)\right) \\
\left.-\frac{2 i \beta}{\alpha} e^{\frac{1}{2} i t\left(\Delta+\frac{\omega_{0}}{2}\right.}\right) & \sin (\alpha t / 2)
\end{array} e^{\frac{1}{2} i t\left(\Delta+\frac{\omega_{0}}{2}\right)}-\frac{2 i \beta}{\alpha} e^{-\frac{1}{2} i t\left(\Delta+\frac{\omega_{0}}{2}\right)} \sin (\alpha t / 2)\right. \\
& \left.\mathbf{(\operatorname { c o s } (\alpha t / 2) - \frac { i } { \alpha } (\Delta - \frac { \omega _ { 0 } } { 2 }) \operatorname { s i n } (\alpha t / 2))}\right) \\
& \mathbf{U}(t)=\exp \left(-\frac{1}{2} i \omega t \boldsymbol{\sigma}_{\mathbf{z}}\right) \exp \left(-i t\left(\frac{1}{2}\left(\omega_{0}-\omega\right) \boldsymbol{\sigma}_{\mathbf{z}}+\beta \boldsymbol{\sigma}_{\mathbf{x}}\right)\right)
\end{aligned}
$$

Applications - Linearly polarized excitation, Bloch-Siegert (BS) effect

$$
\begin{gathered}
\mathbf{H}(t)=\frac{1}{2} \omega_{0} \boldsymbol{\sigma}_{\mathbf{z}}+ \\
2 \beta \boldsymbol{\sigma}_{\mathbf{x}} \cos (\omega t)
\end{gathered}
$$

$$
\mathbf{H}(t)=\left(\begin{array}{cc}
\frac{\omega_{0}}{2} & 2 \beta \cos (\omega t) \\
2 \beta \cos (\omega t) & -\frac{\omega_{0}}{2}
\end{array}\right)
$$

$P(t)$ transition probability

$$
\omega=\omega_{0} \text { or } \omega \neq \omega_{0}
$$

$\beta / \omega=1 / 10$

$\beta / \omega=3 / 2$

$\beta / \omega=10$

- analytical expression with few orders of the Neumann series
P.L. Giscard, C. Bonhomme, to be submitted

Applications - \mathbf{N} spin systems, homonuclear dipolar Hamiltonian, $\boldsymbol{H}_{\boldsymbol{D}}$

Applications - N spin systems, homonuclear dipolar Hamiltonian, $\boldsymbol{H}_{\boldsymbol{D}}$

Applications - N spin systems, homonuclear dipolar Hamiltonian, $\boldsymbol{H}_{\boldsymbol{D}}$

Conclusions and acknowledgments

Path-Sum

(very) warm thanks to P.-L. Giscard

Ass. Pr. in Calais, France
Liouville laboratory
Algebraic Combinatorials
giscard@univ-littoral.fr

- unconditional convergence
- non perturbative formulation
- scalable to large spin systems
- other theory/applications to come...

Post doctoral position available in Paris: on NMR instrumentation \& DNP

