DNP/NMR @ LCMCP:

instrumentation, beyond standard

GIPAW and applications to

biomaterials: Part I

Pr. Christian Bonhomme

christian.bonhomme@upmc.fr

Université Pierre et Marie Curie, Paris, France Sorbonne Universités

4th sino-french workshop 2017

Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), France

SMiLES group @LCMCP

SMILES

Spectroscopy, Modelling, interfaces for naturaL Environment and health topicS.

Spectroscopic and numerical approaches for synthetic and natural materials.

SMiLES group @LCMCP

SMiLES group @LCMCP

Coll.: <u>University</u> of Gent, <u>Belgium</u>.

Solid state NMR in materials science

Outline

Sensitivity issues: DNP MAS

HP ¹²⁹Xe

micro-coils, micro-resonators

- Ab initio calculations of NMR parameters
- New trends in GIPAW

- Biomineralization
- Pathological calcifications

Soft Matter

Context: biological hydroxyapatites (HAp)

Sensitivity issues: DNP MAS

F. Babonneau

C. Coelho

L. Bonhomme-Coury

Iow wt% for all C⁺ and A⁻

Intrinsically distributed materials

Dynamic Nuclear Polarization (DNP) MAS

The HAp structure (hexagonal)

analytical chemistry

Hydroxyapatites: Key Structural Questions and Answers from Dynamic Nuclear Polarization

César Leroy,[†] Fabien Aussenac,[‡] Laure Bonhomme-Coury,[†] Akiyoshi Osaka,[§] Satoshi Hayakawa,[§] Florence Babonneau,[†] Cristina Coelho-Diogo,^{||} and Christian Bonhomme^{*,†}

[†]Sorbonne Universités, UPMC Université Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP) UMR 7574, 4 Place Jussieu, 75252 Paris Cedex 05, France

[‡]Bruker France, 34, rue de l'Industrie, 67166 Wissembourg, France

[§]Graduate School of Natural Science and Technology, University of Okayama, Okayama 700-8530, Japan

^ISorbonne Universités, UPMC Université Paris 06, CNRS, Institut des Matériaux de Paris Centre (IMPC-UPMC-FR2482), 75252 Paris, Cedex 05, France

$$\frac{\partial P}{\partial t} = D \frac{\partial^2 P}{\partial z^2} - \frac{P}{T_{1n}}$$
$$D = \Omega a^2$$
$$\varepsilon = \varepsilon_{1H}^0 \frac{2\sqrt{DT_{1n}}}{L} tanh(\frac{L}{2\sqrt{DT_{1n}}})$$

P.C.A. van der Wel et al., J. Am. Chem. Soc., 2006

Hydroxyapatite (HAp) materials

tunability in:

► size

- morphology
- crystallinity
- chemical composition (C⁺, A⁻)

Synthetic carbonated nanosized HAp

- ► synthetic HAp, ~ 1 wt % in C, labeled in ¹³C
- ▶ 1D, 2D, double- and triple resonance CP, SQ-DQ experiments

natural abundance: large volume rotor, highest magnetic field, moderate MAS

Natural abundance ⁴³Ca DNP spectroscopy

 $v_0(^{43}Ca) = 26,94 \text{ MHz}, 100 \text{ K}, \text{ <u>DNP juice</u>: glycerol-d_8/D_2O/H_2O (60/30/10; v/v/v) + AMUPol,$

sample: ~ 20 mg

Interfacial Ca²⁺ environments in nanocrystalline apatites revealed by dynamic nuclear polarization enhanced ⁴³Ca NMR spectroscopy

Daniel Lee, César Leroy, Charlène Crevant, Laure Bonhomme-Coury, Florence Babonneau, Danielle Laurencin, Christian Bonhomme & Gaël De Paëpe

Future experiments

- elements with low wt % in calcium phosphates (including HAp)
- surface modifications of HAp
- ... extension to (human) biological sample \rightarrow see Part II (kidney stones)

DFS, (Q)CPMG, WURST, BRAIN CP, SOSO,... (Kentgens, ... Schurko ... et al.)

Outline

Sensitivity issues: DNP MAS

HP ¹²⁹Xe

micro-coils, micro-resonators

- Ab initio calculations of NMR parameters
- New trends in GIPAW

- Biomineralization
- Pathological calcifications

Soft Matter

Context: Morphology and dynamics of zeolite nucleation

Crystal Growth |Hot Paper|

③ 3D Study of the Morphology and Dynamics of Zeolite Nucleation

Georgian Melinte,^[a] Veselina Georgieva,^[b] Marie-Anne Springuel-Huet,^[c] Andreï Nossov,^[c] Ovidiu Ersen,^[a] Flavien Guenneau,^[c] Antoine Gedeon,^[c] Ana Palčić,^[b] Krassimir N. Bozhilov,^[d] Cuong Pham-Huu,^[e] Shilun Qiu,^[f] Svetlana Mintova,^[b] and Valentin Valtchev^{*[b]}

to explore the nucleation process in an hydrogel system

► HP ¹²⁹Xe: to determine the *first formed zeolite cages* (EMT-like ; Si/AI = 1.2)

First stages (in time) explored by HP ¹²⁹Xe NMR

Outline

Sensitivity issues:

HP ¹²⁹Xe

DNP MAS

micro-coils, micro-resonators

- Ab initio calculations of NMR parameters
- New trends in GIPAW

- Biomineralization
- Pathological calcifications

Soft Matter

NMR of hybrid mesoporous thin films: a "naive" question

G. Laurent

MACS experiments

Hydroxyapatite as a model compound

Microfabricated inserts for magic angle coil spinning (MACS) wireless NMR spectroscopy. Badilita, V., B. Fassbender, K. Kratt, A. Wong, C. Bonhomme, D. Sakellariou, J. G. Korvink and U. Wallrabe PloS one, Vol., 7(8), 2012, pp. e42848-e42848.

Monolithic micro-resonators

Monolithic MACS micro resonators

J.A. Lehmann-Horn^a, J.-F. Jacquinot^a, J.C. Ginefri^b, C. Bonhomme^c, D. Sakellariou^{a,*}

^a NIMBE, CEA-CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France

^b Laboratoire d'Imagerie par Résonance Magnétique Médicale et Multi-Modalités (IR4M), UMR8081, CNRS, Université Paris-Sud, Université Paris Saclay, Orsay, France ^c Sorbonne Universités, UPMC Université Paris 06, UMR CNRS 7574, Laboratoire de Chimie de la Matière Condensée de Paris, Collège de France, 4 place Jussieu, 75252 Paris Cedex 05, France

Application to thin hybrid membranes

Outline

Sensitivity issues: DNP MAS
HP ¹²⁹Xe

micro-coils, micro-resonators

- Ab initio calculations of NMR parameters
- New trends in GIPAW

- Biomineralization
- Pathological calcifications

Soft Matter

Modeling of materials and first principles calculations of NMR parameters

First principles calculations: the GIPAW approach

Pickard, Mauri, *Phys. Rev. B* (2001) GIPAW

DFT periodic systems all-electron hamiltonians evaluation of j⁽¹⁾(r') using pseudopotentials

$$B_{in}^{(1)}(r) = 1/c \int d^3r' j^{(1)}(r') \times \frac{r-r'}{|r-r'|^3}$$

- assignment
- dynamics
- amorphous samples

C. Bonhomme, C. Gervais, F. Babonneau *et al., Chemical Reviews*, 112, 5733, <u>2012</u>.

Validation of GIPAW: the example of ³¹P

New perspectives in the PAW/GIPAW approach: J_{P-O-Si} coupling constants,

antisymmetric parts of shift tensors and NQR predictions (pages S86–S102) Christian Bonhomme, Christel Gervais, Cristina Coelho, Frédérique Pourpoint, Thierry Azaïs, Laure Bonhomme-Coury, Florence Babonneau, Guy Jacob, Maude Ferrari, Daniel Canet, Jonathan R. Yates, Chris J. Pickard, Siân A. Joyce, Francesco Mauri and Dominique Massiot Article first published online: 29 JUN 2010 | DOI: 10.1002/mrc.2635

First principles calculations of J coupling constants: Si₅O(PO₄)₆

 \rightarrow Si₅O(PO₄)₆

INEPT MAS data: J ~ [4 Hz – 15 Hz]

			² Ј_{Р-О-Si} (Нz)		
Phase	Sites		exp	calc	
Si ₅ O(PO ₄) ₆	<mark>Si(1)</mark> -O(3)-P		15 ± 2	-17,08	
	Si(2)-	O(2)-P		-16,22	
	Si(2)-	O(5)-P	14 & 4 ± 2	-1,17	
	<mark>Si(3)</mark> -O(4)-P		12 ± 2	-14,18	

New perspectives in the PAW/GIPAW approach: J_{P-O-Si} coupling constants, antisymmetric parts of shift tensors and NQR predictions (pages S86–S102) Christian Bonhomme, Christel Gervais, Cristina Coelho, Frédérique Pourpoint, Thierry Azaïs, Laure Bonhomme-Coury, Florence Babonneau, Guy Jacob, Maude Ferrari, Daniel Canet, Jonathan R. Yates, Chris J. Pickard, Sián A. Joyce, Francesco Mauri and Dominique Massiot Article first published online: 29 JUN 2010 | DOI: 10.1002/mrc.2635

Peptide-functionalized MOFs

Functionalized Metal–Organic Frameworks |Hot Paper|

Molecular Level Characterization of the Structure and Interactions in Peptide-Functionalized Metal–Organic Frameworks

Tanya K. Todorova,^[a] Xavier Rozanska,^[b] Christel Gervais,^[c] Alexandre Legrand,^[d] Linh N. Ho,^[d] Pierrick Berruyer,^[e] Anne Lesage,^[e] Lyndon Emsley,^[f] David Farrusseng,^[d] Jérôme Canivet,^{*[d]} and Caroline Mellot-Draznieks^{*[a]}

- peptide conformation in peptide-functionalized MOFs
- ► combination of DFT / MD / GIPAW / ¹⁵N DNP MAS experiments

MIL-68: indium derived MOF

MIL-68-NH-Gly-Pro: low energy conformations

Phosphate species on hydrated anatase surfaces

Outline

Sensitivity issues: DNP MAS

HP ¹²⁹Xe

micro-coils, micro-resonators

- Ab initio calculations of NMR parameters
- New trends in GIPAW

- Biomineralization
- Pathological calcifications

Soft Matter

A recent trend: including temperature in GIPAW

Temperature in GIPAW

Temperature dependence of X-ray absorption and nuclear magnetic resonance spectra: probing quantum vibrations of light elements in oxides†

Ruidy Nemausat,*^{ab} Christel Gervais,^b Christian Brouder,^a Nicolas Trcera,^c Amélie Bordage,^d Cristina Coelho-Diogo,^e Pierre Florian,^f Aydar Rakhmatullin,^f Ion Errea,^{gh} Lorenzo Paulatto,^a Michele Lazzeri^a and Delphine Cabaret^a

- Temperature dependence of NMR (and XANES) spectra
- predictive calculations taking quantum thermal vibrations into account
- non-equilibrium configurations (finite T quantum statistics at the quasiharmonic level

Sample type	Probed atom	
Single crystal Powder Single crystal Powder Polycrystal Single crystal	Mg (6) Mg (4), Al (6) Al (6) Al (4) Si (6) Si (4)	
	Sample type Single crystal Powder Single crystal Powder Polycrystal Single crystal	

theoretical ingredients

A7

► for (any) observable O: (

$$O(T) = \int d\bar{\mathbf{R}} P(\bar{\mathbf{R}}) O(\bar{\mathbf{R}}) \simeq \frac{1}{N_{\rm c}} \sum_{i=1}^{N_{\rm c}} O(\bar{\mathbf{R}}^i).$$

Outline

- Sensitivity issues: **DNP MAS** 10T Magnet HP ¹²⁹Xe **RF and MW** Resonator 400 MHz (1H) **RF** Console micro-coils, micro-resonators
- Ab initio calculations of NMR parameters •
- **New trends in GIPAW** •

- **Biomineralization** •
- **Pathological calcifications** •

280 GHz

MW Source

Soft Matter

Biomineralization and pathological calcifications (kidney stones)

T. Azaïs (& N. Nassif)

D. Bazin

kidney stone macro-crystals

hydroxyapatite nano-crystals

Water-mediated structuring of bone apatite

nature materials

Yan Wang^{1†}, Stanislas Von Euw^{1†}, Francisco M. Fernandes¹, Sophie Cassaignon¹, Mohamed Selmane², Guillaume Laurent¹, Gérard Pehau-Arnaudet³, Cristina Coelho², Laure Bonhomme-Coury¹, Marie-Madeleine Giraud-Guille¹, Florence Babonneau¹, Thierry Azaïs^{1*} and Nadine Nassif^{1*}

crystalline, biomimetic apatite nano-particles and intact bones

► amorphous Ca-P layer coating the crystalline HAp cores

HETCOR and EXSY experiments

Chemical composition of the apatitic layer

Outline

- Sensitivity issues: **DNP MAS** 10T Magnet HP ¹²⁹Xe **RF and MW** 400 MHz (1H) **RF** Console micro-coils, micro-resonators
- Ab initio calculations of NMR parameters •
- **New trends in GIPAW** •

- **Biomineralization** .
- **Pathological calcifications** •

Resonator

280 GHz

MW Source

Soft Matter •

see also Part II

¹³C{³¹P} REDOR experiments

many thanks to:

M.J. Duer

Structural elucidation of silica present in kidney stones coming from Burkina Faso

Élucidation structurale de la silice présente dans des calculs rénaux prélevés au Burkina Faso

Arnaud Dessombz ^{a, b, *}, Gérard Coulibaly ^c, Brahima Kirakoya ^c, Richard W. Ouedraogo ^c, Adama Lengani ^c, Stéphan Rouziere ^b, Raphael Weil ^b, Lise Picaut ^b, Christian Bonhomme ^d, Florence Babonneau ^d, Dominique Bazin ^{b, d}, Michel Daudon ^e

²⁹Si MAS

Outline

- Sensitivity issues: DNP MAS HP ¹²⁹Xe micro-coils, micro-resonators
- Ab initio calculations of NMR parameters
- New trends in GIPAW

- Biomineralization
- Pathological calcifications

Soft Matter

Applications of solid state NMR to soft matter

biocompatible, biodegradable, low toxicity bio-surfactants

sophorolipids (glycolipids), starting from vegetal oil, glucose and yeast (fermentation)

nanoscale chirality

Sophorolipids

pH-triggered formation of nanoribbons from yeastderived glycolipid biosurfactants[†]

Anne-Sophie Cuvier,^{abc} Jan Berton,^d Christian V. Stevens,^d Giulia C. Fadda,^e Florence Babonneau,^{abc} Inge N. A. Van Bogaert,^f Wim Soetaert,^f Gérard Pehau-Arnaudet^g and Niki Baccile^{*abc}

¹H DQ BABA

Hybrid materials and solid state NMR: a review

Progress in Nuclear Magnetic Resonance Spectroscopy

Progress in Resonance Spectroscopy Internetional Action Internetional Action Internetional Action

Volume 77, February 2014, Pages 1-48

Recent NMR developments applied to organic-inorganic materials

Christian Bonhomme^{a,} 📥 · 🔤, Christel Gervais^a, Danielle Laurencin^b

Contents

1. Introduction 2 Experimental and theoretical NMR developments applied to the study of organic-inorganic materials. 1 2.1. Texture of porous materials 1 2.1.1. Texture of porous materials 1 2.1.2. ************************************				NG C	
2. Experimental and theoretical NMK developments applied to the study of organic-morganic materials. 3 2.1. Texture of protos materials. 3 2.1.1. TEXTURE of ANR. 3 2.1.3. PRC NG, and 'H NMR. 5 2.1.4. MAS FPG NMR. 5 2.3. DOSY NMR. 7 2.3. Increasing NMR sensitivity. 5 2.3. PHIP and NR. 8 2.3. PHIP and NR. 9 2.3. Interfaces in disordered systems. 9 2.4.4. First principles calculations. 11 2.4.3. Interfaces in disordered systems. 11 2.4.4. First principles calculations. 3.1.4. Bioactive silica derived hybrid materials 11 2.4.4. Interfaces in disordered systems. 3.1.4. Bioactive silica derived hybrid materials 19 3.1.4. Bioactive silica derived hybrid materials 3.1.4. Bioactive silica derived hybrid materials 19 3.1.4. Bioactive silica derived hybrid materials 3.1.4. Bioactive silica derived hybrid materials 19 3.1.4. Advanced old tate NMR reorganic	1.	Introduction			
2.1. texture or provis materials 3 2.1.1. texture or provis materials 3 2.1.2. texture of provis materials 3 2.1.2. texture of provis materials 3 2.1.3. texture of provis materials 3 2.1.4. MAS PIG NMR 4 2.2. DOSY NMR 6 2.3. Increasing NMR sensitivity 6 2.3. Increasing NMR sensitivity 8 2.3. DNP MAS 9 2.4. First principles calculations 11 2.4.1. Heat organic inorganic materials 11 2.4.2. Crystalline templated systems 13 2.4.4. Functionalized metallic clusters 3.1.4. Bioactive silica derived hybrid materials 14 3.1.1. Hybrid silicas 3.1.5. Polyhedral silsequicances 19 3.1.1. Hybrid silicas 3.1.5. Polyhedral silsequicances 19 3.1.3. Interfaces in silica derived hybrids 2.2. 14.5. Polyhedral silsequicances 19 3.1.3. Interfaces in silica derived hybrids 2.	2.	Experimental and theoretical NMR developments applied to the study	of organic-	inorganic materials	
2.11. ³ Kr. ¹⁰ C. and ¹ H NMR 3 2.13. PFG NMR 7 2.14. MAR FeG NMR 7 2.2. DOSY NMR, 7 2.3. Increasing MMR sensitivity. 8 2.3. DIC recasing MMR sensitivity. 8 2.3. DIC recasing MMR sensitivity. 8 2.3. DIC recasing MMR sensitivity. 9 2.3. DIC recasing MMR sensitivity. 9 2.4. Interfaces in disordered systems. 11 2.4. Interfaces in disordered systems. 13 2.4. Functionalized metaile clusters. 3.1.4. 3.1. Hybrid anterials. 14 3.1. A Force recent applications of solid state NMR to organic inorganic materials. 3.1.6. 3.1.1. Advanced solid state NMR to charge endower in ordinaterials. 15 3.1.1. Advanced solid state NMR to charge endower in ordino ordic class 19 3.1.1. Advanced solid state NMR to charge endower in ordino ordic class 2.1. 3.1.1. Advanced solid state NMR to charge endower in ordino indic class 2.2. 3.1.1. Advanced solid state NMR		2.1. lexture of porous materials	• • • • • • • • • •		
21.2 -K Callo H NNR. 3 21.3 MRK sensitivity. 5 22. DOSY NNR. 6 23.1 Microcolis and MAS. 8 2.3.1 Microcolis and MAS. 9 2.3.1 Microcolis and MAS. 9 2.4.1 Meal Systems. 11 2.4.2 Crystalline templated systems. 13 2.4.3 Interfaces in disordered systems. 13 2.4.4 Functionalized metallic clusters 3.1.4 3.1.4 Bioactive silica derived hybrid materials 19 3.1.4 Hybrid silicas. 13 3.1.4 Hybrid ditions of solid state NMK techniques 3.1.5 3.1.4 Hybrid ditions. 19 3.1.4 Hybrid naterials involving antoins solid as inorganic component. 10 3.1.2 Encapsulation of molecules 20 3.1.3 Interfaces in silica derived hybrids 21 3.1.4 Hybrid naterials 20 3.1.5 Congels and nanoparticle networks 19 3.1.4 Hybrid naterials 20 3.1.4 Hybrid naterials <td></td> <td>2.1.1. ⁸³/₇ ¹³C and ¹U NMD</td> <td>• • • • • • • • •</td> <td></td> <td></td>		2.1.1. ⁸³ / ₇ ¹³ C and ¹ U NMD	• • • • • • • • •		
2.1.3 PTC NMR. 5 2.2 DOSY NMR. 7 2.3 Increasing NMR sensitivity. 8 2.3.1 Microcolis and MAS. 9 2.3.2 PHIP and MRI. 9 2.3.3 DNP MAS. 9 2.4.4 First principles calculations 11 2.4.5 Erst principles calculations 11 2.4.4 Furthace remplated systems. 13 2.4.3 Interfaces in disordered systems. 13 2.4.4 Furthace networks and related metal organic ligand crystalline compounds. 11 2.4.4 Furthace networks and related metal organic materials. 14 3.1.4 Hunctionalized metalic (usters 3.1.4. 3.1.5 Polyberdial siles aguitoxanes. 19 3.1.1 Advanced solid state NMR techniques 31.5. 3.1.2 Hybrid alices. 20 3.1.3 Interfaces in silica derived hybrids 32.1. 3.1.4 Hybrid ations: colid as inorganic component. 10 3.2.1 Hybrid ationic clays. 20 3.2.3 Hybrid ationic clays. 21 <		2.1.2. PEC NMP	• • • • • • • • •		
22. DOES WMR 0 23. Increasing NMR sensitivity 0 23. Increasing NMR sensitivity 0 23. Increasing NMR sensitivity 0 23. DPM MAS. 9 24. First principles calculations 11 24.1. Metal organic frameworks and related metal organic ligand crystalline compounds 11 24.1. Metal organic frameworks and related metal organic ligand crystalline compounds 11 24.2. Crystalline templated systems. 13 24.3. Interfaces in disordered systems. 13 3.1. Hybrid silica. 3.1.4. Bioactive silica derived hybrid materials 3.1.1. Advanced solid state NMR techniques 3.1.4. Pybrid materials involving an ionic solid as inorganic component. 19 3.1.1. Advanced solid state NMR techniques 3.2. Hybrid materials involving an ionic solid as inorganic component. 10 3.1.3. Interfaces in silica derived hybrids 3.2. Hybrid materials. 3.2. Hybrid atomic clays. 21 3.2.4. Functionalized micro/nanparticle sof metarials. 22 20 22. Hybrid atomic clays. 21 3.3. Hybrid solica. 3.3. Hybrid solica. 22 23.2. Hybrid atomic clays. 23 23.2. Hybrid atomic clays. 23 3.3. Biomaterials. <		2.1.3. PFG NIVIR	• • • • • • • • •		
22. DOS NMM 8 23. Interfaces in disordered systems. 9 24. First principles calculations 11 24.2. Crystalline templated systems. 13 24.3. Interfaces in disordered systems. 13 24.4. First principles calculations 14 24.2. Crystalline templated systems. 13 24.3. Interfaces in disordered systems. 13 2.4.4. Functionalized metallic clusters 3.1.4. Bioactive silica derived hybrid materials 14 3.1. Advanced solid state NMR techniques 3.1.4. 3.1.1. Advanced solid state NMR techniques 3.2. 3.1.2. Encapsulation of molecules 3.1.4. 3.1.3. Interfaces in silica derived hybrids 32. 3.1.3. Interfaces in silica derived hybrids 32. 3.1.3. Interfaces in silica derived hybrids 32.1. 3.1.3. Interfaces in silica derived hybrids 32.1. 3.1.4. Biomaterials 3.1. 3.1.3. Interfaces in silica derived hybrids 32.3. 3.1.3.		2.1.4. IVIAS FEG INVIR	• • • • • • • • •	7	
2.3.1. Microcolis and MAS 8 2.3.2. PHIP and MRI 9 2.3.3. DNP MAS 9 2.4. First principles calculations 11 2.4.1. Meta organic frameworks and related metal organic ligand crystalline compounds 11 2.4.1. Meta organic frameworks and related metal organic ligand crystalline compounds 13 2.4.2. Crystalline templated systems 13 2.4.3. Interfaces in disordered systems 13 3.1. Recent applications of solid state NMR to organic-inorganic materials 3.1.4. Bioactive silica derived hybrid materials 19 3.1.1. Advanced solid state NMR techniques 3.2. Hybrid principhate-based materials 12 2.2 3.1.2. Encapsulation of molecules 3.1.3. Interfaces in silica derived hybrids 3.2. 3.2.3. 19/brid atomic clays 3.2.3. 12 2.2.4. 19 3.1.3. Interfaces in silica derived hybrids 3.2.2. 3.1.4. Biomaterials 0.2.4. 2.0 3.1.3. Interfaces in silica derived hybrids 3.2.3. 3.1.4. Biomaterials 2.2.4. 19		2.2. DOST NMR			
2.3.2 PHIP and MRI 9 2.3.3 DNP MAS. 9 2.4. First principles calculations 11 2.4.1. Metal organic frameworks and related metal organic ligand crystalline compounds 11 2.4.2. Crystalline templated systems. 13 2.4.3. Interfaces in disordered systems. 13 2.4.4. Functionalized metallic clusters 3.1.4. Bioactive silica derived hybrid materials 19 3.1. Afford State NMR to organic-inorganic materials. 3.1.5. Polyhedral silsesquioxanes. 19 3.1.1. Advanced solid state NMR to chinques 3.1.4. Bioactive silica derived hybrid materials 19 3.1.1. Advanced solid state NMR techniques 3.1.4. Bioactive silica derived hybrid materials 19 3.1.2. Encapsulation of molecules 3.1.4. Bioactive silica derived hybrids. 20 3.1.2. Encapsulation of molecules 3.2.1. Hybrid anionic clays. 21 3.1.3. Interfaces in silica derived hybrids. 22 3.2.3. Hybrid materials. 22 3.2.4. Hybrid materials 23.3.1. 23.3.1. 10		2.3.1 Microcoils and MAS		8	
2.3.3 DNP MAS. 9 2.4. First principles calculations 11 2.4.1 Metal organic frameworks and related metal organic ligand crystalline compounds 11 2.4.2 Crystalline templated systems 13 2.4.3 Interfaces in disourdered systems 13 2.4.4 Functionalized metallic clusters 3.1.4 Bioactive silica derived hybrid materials 14 3.1 Hybrid silicas 3.1.5 Polyhedral silsesquioxanes. 19 3.1.1 Advanced solid state NMR to organic-inorganic materials. 3.1.6 longesta danda norincic networks 19 3.1.2 Encapsulation of molecules 3.1.6 longesta danda norincic networks 19 3.1.3 Interfaces in silica derived hybrids 3.2 Hybrid notic clays 20 3.1.3 Interfaces in silica derived hybrids 3.2 Hybrid notic clays 21 3.1.4 Bioactive silica derived hybrids 3.2 Hybrid nationic clays 22 3.1.3 Interfaces in silica derived hybrids 3.2 Hybrid nationic clays 22 3.2.3 Other hybrid materials 3.3 3.3 Biomaterials <td></td> <td>2.3.2 PHIP and MRI</td> <td></td> <td></td> <td></td>		2.3.2 PHIP and MRI			
2.4. First principles calculations 11 2.4.1. Metal organic frameworks and related metal organic ligand crystalline compounds 11 2.4.2. Crystalline templated systems 13 2.4.3. Interfaces in disordered systems 13 2.4.4. Functionalized metal loculaters 3.1.4. Bioactive silica derived hybrid materials 14 3. Recent applications of solid state NMR to organic-inorganic materials. 3.1.5. Polyhedral silesequioxanes. 19 3.1.1. Advanced solid state NMR techniques 3.1.6. longels and nanoparticle networks 19 3.1.2. Encapsulation of molecules 3.1.4. Hybrid phosphate-based materials 10 3.1.3. Interfaces in silica derived hybrids 3.2. Hybrid anionic clays 22 3.2. Hybrid anionic clays 21 23.2. Hybrid anionic clays 22 3.2. So ther hybrid materials 22 3.2. Hybrid anionic clays 23 3.3. Biomaterials 24 3.3. Biomaterials 24 3.4.1. Simple metal complexes and clusters 28 3.4. Functionalized metal and coatings 24 3.4.1. Simple metal complexes and coordination networks 28 34.1. Simple metal complexes and coordination networks 28 3.4.1. Simple metal complexes and clusters 29 24.3. Met		2.3.2. DNP MAS		9	
2.4.1. Metal organic frameworks and related metal organic ligand crystalline compounds 11 2.4.2. Crystalline templated systems 13 2.4.3. Interfaces in disordered systems 13 3.4.4. Functionalized metallic clusters 3.1.4. Bioactive silica derived hybrid materials 14 3.1.1. Hybrid silicas 3.1.5. Polyhedral silsesquixanes. 19 3.1.1. Advanced solid state NMR techniques 3.1.5. Polyhedral silsesquixanes. 19 3.1.2. Encapsulation of molecules 3.1.1. Advanced solid state PMR techniques 12.1. Hybrid anioparticle networks 19 3.1.3. Interfaces in silica derived hybrids 2.2. Hybrid clainic clays 2.2. Hybrid anterials 20 3.1.3. Interfaces in silica derived hybrids 3.1.8. Polyhedral silsesquixanes. 19 3.1.3. Interfaces in silica derived hybrids 3.2. Hybrid antionic clays 2.2. Hybrid anterials 20 3.1.3. Interfaces in silica derived hybrids 3.2. Synthetic bio-inspired materials 20 3.2. Synthetic bio-inspired materials 20 3.2. Hybrid structures involving metal complexes and coordination networks 33 3.3. Synthetic bio-inspired materials and coatings 3.4. Summary and outlook 28 3.4.4. Functionalized microlandoper metal complexes and clousters 34 34.4. Function		2.4. First principles calculations			
2.4.2. Crystalline templated systems. 13 2.4.3. Interfaces in disordered systems. 14 2.4.4. Functionalized metallic clusters 13 3.1.4. Functionalized metallic clusters 14 3.1. Hybrid silicas 15 3.1.1. Advanced solid state NMR to organic-inorganic materials. 15. 3.1.1. Advanced solid state NMR techniques 13. 3.1.2. Encapsulation of molecules 22. 3.1.3. Interfaces in silica derived hybrids 22.2. 3.1.3. Interfaces in silica derived hybrids 22.2. 3.1.3. Interfaces in silica derived hybrids 22.3. 3.1.4. Biomaterials 22.2. 3.1.3. Interfaces in silica derived hybrids 23.3. 3.1.3. Interfaces in silica derived hybrids 23.2. 3.1.3. Interfaces in silica derived hybrids 23.3. 3.1.3. Interfaces in silica derived hybrids 23.3. 3.1.4. Biomaterials 23.3. 3.1.5. Polyhed materials 23.3. 3.1.6. Interfaces in silica derived hybrids 23.2. <td></td> <td>2.4.1. Metal organic frameworks and related metal organic lig</td> <td>nd crystal</td> <td>line compounds</td> <td></td>		2.4.1. Metal organic frameworks and related metal organic lig	nd crystal	line compounds	
24.3. Interfaces in disordered systems. 1 2.4.4. Functionalized metallic clusters 1 3. Recent applications of solid state NMR toorganic-inorganic materials. 1.1. 3.1. Hybrid silicas. 1.1. 3.1.2. Encaspulation of molecules 1.1. 3.1.3. Interfaces in silica derived hybrids 1.1. 3.1.3. Interfaces in silica derived hybrids 2.2.1. 3.1.4. Bioactive silica derived hybrid materials 1.9 3.2.2. Hybrid materials involving an ionic solid as inorganic component. 1.0. 3.2.1. Hybrid anionic clays. 2.2.1. 3.2.2. Hybrid anionic clays. 2.2.1. 3.2.3. Hybrid materials. 2.2.1. 3.2.4. Hybrid materials. 2.2.1. 3.2.5. Other hybrid materials. 2.3.3. 3.3.8. Biomaterials. 2.3.3. 3.4.9. Suphetaclaster and couplexes		2.4.2. Crystalline templated systems			1
2.4.4 Functionalized metallic clusters 3.1.4 Bioactive silica derived hybrid materials 19 3. Recent applications of solid state NMR to organic-inorganic materials. 3.1.5 Polyhedral silsesquioxanes. 19 3.1.1 Advanced solid state NMR techniques 31.6 Inorge sequination of molecules 19 3.1.2 Encapsulation of molecules 3.1.4 Bioactive silica derived hybrid anterials 19 3.1.3 Interfaces in silica derived hybrids 3.1.4 Hybrid materials involving an ionic solid as inorganic component. 10 20 3.1.3 Interfaces in silica derived hybrids 3.2.1 Hybrid naterials 20 3.2.1 Hybrid materials 20 3.2.1 Hybrid materials 3.2.1 Hybrid naterials 21 22 20 3.2.3 Jybrid materials 3.2.3 Supprint antice derived naterials 22 22 3.2.4 Functionalized metal onic clays 21 3.2.1 Hybrid materials 22 3.2.4 Functionalized metal complexes and coordination networks 3.3.1 3.3.1 3.3.1 3.3.1 3.3.1 3.3.1 3.3.2 3.3.1 3.3.2		2.4.3. Interfaces in disordered systems		The second se	
3. Recent applications of solid state NMR to organic-inorganic materials. 3.1.5. Polyhedral silesquioxanes. 19 3.1.1. Advanced solid state NMR techniques 3.1.6. lonogels and nanoparticle networks 19 3.1.2. Encapsulation of molecules 3.1.8. Interfaces in silica derived hybrids 10 3.1.3. Interfaces in silica derived hybrids 3.1.9. Hybrid nationic clays 20 3.2.4. Hybrid actionic clays 21 3.2.4. Hybrid anoinic clays 21 3.2.8. Hybrid anoinic clays 22 3.2.5. Other hybrid materials 21 3.3. Natural biomaterials 3.3.1. Natural biomaterials 24 3.3.2. Hybrid structures involving metal complexes and coatings 24 3.3.4. Simple metal complexes and coatings 23 3.4.3. Metal Organic Frameworks (MOFs). 20 3.4.4. Functionalized metal nanoparticles 32 3.4.4. Functionalized metal nanoparticles 33 3.4.4. Summary and outlook 33 3.4.5. Summary and outlook 33 3.4.6. Summary and outlook 33 3.4.7 Summary and outlook 34 3.4.8 Dibreviations and acronyms 34		2.4.4. Functionalized metallic clusters		3.1.4. Bioactive silica derived hybrid materials	9
3.1. Hybrid silicas. 3.1.6. lonogels and nanoparticle networks. 19 3.1.1. Advanced solid state NMR techniques 20 3.1.2. Encapsulation of molecules. 21 3.1.3. Interfaces in silica derived hybrids 22 3.1.3. Interfaces in silica derived hybrids 22 3.1.3. Interfaces in silica derived hybrids 22 3.1.4. Hybrid ationic clays. 22 3.1.5. Uncertain silica derived hybrids 22 3.1.6. Uncertain silica derived hybrids 22 3.1.8. Hybrid ationic clays. 22 3.1.9. Hybrid ationic clays. 22 3.2.4. Functionalized micro/nanoparticles of metal oxides and other ionic solids. 20 3.1.1. Natural biomaterials. 23 3.1.1. Natural biomaterials. 23 3.1.1. Natural biomaterials. 24 3.1.1. Natural biomaterials. 24 3.1.1. Natural biomaterials. 24 3.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	3.	Recent applications of solid state NMR to organic-inorganic materials.		3.1.5. Polyhedral silsesquioxanes	9
3.1.1. Advanced solid state NMR techniques 20 3.1.2. Encapsulation of molecules 20 3.1.3. Interfaces in silica derived hybrids 20 3.1.3. Interfaces in silica derived hybrids 20 3.1.3. Interfaces in silica derived hybrids 21 3.2.1. Hybrid materials involving an ionic clays 20 3.2.3. Hybrid materials involving an ionic clays. 21 3.2.4. Functionalized micro/nanoparticles of metal oxides and other ionic solids. 20 3.2.3. Hybrid materials 22 3.2.4. Functionalized micro/nanoparticles of metal oxides and other ionic solids. 20 3.2.3. Hybrid materials 22 3.2.4. Functionalized micro/nanoparticles of metal oxides and other ionic solids. 20 3.2.5. Other hybrid materials 24 3.3.1. Natural biomaterials 24 3.3.2. Synthetic bio-inspired materials and coatings 27 3.4.1. Simple metal complexes and clusters 28 3.4.2. Coordination polymers. 29 3.4.3. Metal Organic Frameworks (MOFs). 30		3.1. Hybrid silicas		3.1.6. lonogels and nanoparticle networks	9
3.1.2. Encapsulation of molecules 3.2.1. Hybrid phosphate-based materials 20 3.1.3. Interfaces in silica derived hybrids 3.2.1. Hybrid phosphate-based materials 21 3.2.3. Hybrid actionic clays 3.2.3. Hybrid actionic clays 22 3.2.4. Functionalized micro/nanoparticles of metal oxides and other ionic solids 21 23 3.2.5. Other hybrid materials 23 3.3. Biomaterials 23 3.3. Jatural biomaterials 24 3.3.1. Natural biomaterials and coatings 24 3.4. Hybrid structures involving metal complexes and coordination networks 28 3.4.1. Simple metal complexes and clusters 28 3.4.1. Simple metal organic Frameworks (MOFs) 30 34.4. Functionalized metal nanoparticles 33 3.4.4. Functionalized metal nanoparticles 33 33 34.4. Summary and outlook 33 3.4.1. Simple metal complexes and coordination networks 33 34.4. Functionalized metal nanoparticles 33 3.4.2. Coordination polymers 33 34.4. Functionalized metal nanoparticles 3		3.1.1. Advanced solid state NMR techniques	· 3.2	Hybrid materials involving an ionic solid as inorganic component	:0
3.1.3. Interfaces in silica derived hybrids 3.2.2. Hybrid cationic clays 21 3.1.3. Interfaces in silica derived hybrids 3.2.3. Hybrid anionic clays 22 3.2.3. Hybrid anionic clays 3.2.4. Functionalized micro/nanoparticles of metal oxides and other ionic solids. 22 3.2.5. Other hybrid materials 23 3.3. Biomaterials 23 3.3.1. Natural biomaterials 24 3.3.2. Synthetic bio-inspired materials and coatings 24 3.4. Hybrid structures involving metal complexes and coordination networks 28 3.4.1. Simple metal complexes and clusters 29 3.4.4. Functionalized metal nanoparticles 30 3.4.4. Functionalized metal nanoparticles 33 4. Summary and outlook 33 References 34 4. Summary and outlook 33 7. Summary and outlook 34 7. Summary and outlook 34 <td< td=""><td></td><td>3.1.2. Encapsulation of molecules</td><td>•</td><td>3.2.1. Hybrid phosphate-based materials</td><td>:0</td></td<>		3.1.2. Encapsulation of molecules	•	3.2.1. Hybrid phosphate-based materials	:0
3.2.3.Hybrid anionic clays.223.2.4.Functionalized micro/nanoparticles of metal oxides and other ionic solids.233.2.5.Other hybrid materials.233.3.Biomaterials.243.3.1.Natural biomaterials.243.3.2.Synthetic bio-inspired materials and coatings.273.4.Hybrid structures involving metal complexes and coordination networks.283.4.1.Simple metal complexes and clusters.283.4.3.Metal Organic Frameworks (MOFs).303.4.4.Functionalized metal nanoparticles.334.Summary and outlook334.Summary and outlook344.List of abbreviations and acronyms34		3.1.3. Interfaces in silica derived hybrids	•	3.2.2. Hybrid cationic clays	!1
3.2.4. Functionalized micro/nanoparticles of metal oxides and other ionic solids. 22 3.2.5. Other hybrid materials. 23 3.3. Biomaterials. 24 3.3.1. Natural biomaterials. 24 3.3.2. Synthetic bio-inspired materials and coatings 27 3.4. Hybrid structures involving metal complexes and coordination networks. 28 3.4.1. Simple metal complexes and clusters. 28 3.4.3. Metal Organic Frameworks (MOFs). 29 3.4.4. Functionalized metal nanoparticles. 30 3.4.4. Functionalized metal nanoparticles. 33 4. Summary and outlook . 33 4. List of abbreviations and acronyms 34				3.2.3. Hybrid anionic clays	:2
3.2.5. Other hybrid materials. 23 3.3. Biomaterials. 24 3.3.1. Natural biomaterials. 24 3.3.2. Synthetic bio-inspired materials and coatings 27 3.4. Hybrid structures involving metal complexes and coordination networks. 28 3.4.1. Simple metal complexes and clusters. 28 3.4.2. Coordination polymers. 29 3.4.3. Metal Organic Frameworks (MOFs). 30 3.4.4. Functionalized metal nanoparticles. 33 4. Summary and outlook . 33 4. Summary and acronyms 34				3.2.4. Functionalized micro/nanoparticles of metal oxides and other ionic solids.	:2
3.3. Biomaterials. 24 3.3.1. Natural biomaterials. 24 3.3.2. Synthetic bio-inspired materials and coatings 27 3.4. Hybrid structures involving metal complexes and coordination networks. 28 3.4.1. Simple metal complexes and clusters 28 3.4.2. Coordination polymers. 29 3.4.3. Metal Organic Frameworks (MOFs). 30 3.4.4. Functionalized metal nanoparticles. 33 4. Summary and outlook . 33 4. Summary and outlook . 33 4. List of abbreviations and acronyms 34				3.2.5. Other hybrid materials.	3
3.3.1. Natura biomaterials. 24 3.3.2. Synthetic bio-inspired materials and coatings. 27 3.4. Hybrid structures involving metal complexes and coordination networks. 28 3.4.1. Simple metal complexes and clusters. 28 3.4.2. Coordination polymers. 29 3.4.3. Metal Organic Frameworks (MOFs). 30 3.4.4. Functionalized metal nanoparticles. 33 4. Summary and outlook . 33 4. Summary and acronyms 34			3.3	Biomaterials.	4
3.3.2 Synthetic bio-inspired match as and coalings 27 3.4. Hybrid structures involving metal complexes and coordination networks. 28 3.4.1. Simple metal complexes and clusters. 28 3.4.2. Coordination polymers. 29 3.4.3. Metal Organic Frameworks (MOFs). 30 3.4.4. Functionalized metal nanoparticles. 33 4. Summary and outlook 33 4. Summary and outlook 33 4. List of abbreviations and acronyms 34				3.3.1. Natural biomaterials. 24	.4
3.4. Hybrid structures involving inetal complexes and coordination networks. 28 3.4.1. Simple metal complexes and clusters. 28 3.4.2. Coordination polymers. 29 3.4.3. Metal Organic Frameworks (MOFs). 30 3.4.4. Functionalized metal nanoparticles. 33 4. Summary and outlook . 33 4. References 34 List of abbreviations and acronyms 47			2.4	3.3.2. Synthetic bio-hispited inatchais and coartigston patrons 2.2	./
3.4.1 Sordination polymers 29 3.4.3 Metal Organic Frameworks (MOFs) 30 3.4.4 Functionalized metal nanoparticles 33 4. Summary and outlook 33 4. Summary and outlook 34 References 34 34 List of abbreviations and acronyms 34			5.4	a 41 Simple wetal complexes and clusters	.0 12
3.4.2. Contactor por parts 25 3.4.3. Metal Organic Frameworks (MOFs). 30 3.4.4. Functionalized metal nanoparticles. 33 4. Summary and outlook . 33 References 34 List of abbreviations and acronyms 47				3.4.2 Coordination polymers	0
3.4.4. Functionalized metal nanoparticles. 33 4. Summary and outlook. 33 References 34 List of abbreviations and acronyms 47				34.3 Metal Organic Frameworks (MOFs)	10
4. Summary and outlook 33 References 34 List of abbreviations and acronyms 47				344 Functionalized metal nanonarticles 33	13
References			4. Sur	nmary and outlook	13
List of abbreviations and acronyms			Ref	erences	4
			Lis	of abbreviations and acronyms	7

